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INTRODUCTION

It is well known that ×ós theorem on ultraproducts implies the compactness the-
orem of �rst order logic (Frayne, Morel, and Scott 1962 [FMS]). Similarly, utilizing
appropriate versions of ×ós theorem one may prove [�; �]-compactness of the in�ni-
tary logic L�� for a measurable cardinal �, or [!; !]-compactness of L(Qc+) where
Qc+ is the quanti�er �there are at least (2!)+ ...�. It is natural to ask then if any
form of compactness in model theoretic logics is associated to some ×ós-like theo-
rem. Makowsky and Shelah 1983 [MSh] have shown the remarkable result that this
is always the case for [�; �]-compactness of a logic. That is the content of their

Abstract Compactness Theorem. A model theoretic logic L is [�; �]-compact if
and only if there is a (�; �)-regular ultra�lter U over some set I which satis�es the
following property:

(�) For any family of structures fAi : i 2 Ig of type � there is an extension A�
of the ultraproduct �iAi=U such that for any formula �(x; :::) 2 L(�) and sequence of
functions f; ::: 2 �iAi:

A� j= �[f=U ; :::] i¤ fi 2 I : A j= �[f(i); :::]g 2 U :

(U may be taken always over I = �<�, or uniform over I = � if � is a regular
cardinal and � = �).

The theorem implies for example that L(Q�+1) is [�; !]-compact if and only
if !�� = !� (hence, L(Q1) is not [!; !]-compact). Deeper consequences about the
compactness spectrum of logics are discussed in Makowsky 1985 [Ma].

The original version in [MSh] is given in terms of extensions of ultrapowers and
assumes expansions of vocabularies by binary relation symbols. We have stated the
theorem in terms of ultraproducts because this version implies the original one and
holds for a wider family of logics, including monadic logics. For a version in terms of
ultralimits see Lipparini 1987 [Li].

An ultra�lter U satisfying the Lós-like condition (�) of the Theorem is said to
be related to L.

We show in this paper that the �Abstract Compactness Theorem� and other
results on [�; �]-compactness of logics are purely topological phenomena. They follow
from a characterization of productive [�; �]-compactness of topological spaces, that is
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preservation of [�; �]-compactness by cartesian products, which generalizes analogous
results for productive [�; !]-compactness by Ginsburg and Saks 1975 [GS], Saks 1978
[Sa], and García-Ferreira 1990 [GF]. For this purpose we consider the spaces of �rst
order structures endowed with the topology induced by the �elementary�classes of
a logic L, the key observations being that an ultra�lter U is related to L if and
only these spaces are U-compact in the sense of Saks, and any product of them is
[�; �]-compact when the logic is [�; �]-compact.

In the topological side, our characterization implies that several properties previ-
ously known for logic compactness hold true for productive compactness of topological
spaces. For example, if � is smaller than the �rst measurable cardinal then produc-
tive [�; �]-compactness of a space implies (productive) countable compactness of the
space.

I. [�; �]-COMPACTNESS AND U-COMPACTNESS OF TOPOLOGICAL SPACES

The following natural generalization of the notion of compactness of a topological
space was �rst considered by Alexandro¤ and Urysohn in 1929 [AU] and thoroughly
studied later by many people. See the survey papers by Vaughan 1984 [V2] and
Stephenson 1984 [St], also Nyikos 1992 [N].

De�nition 1.1. A topological space X is [�; �]-compact, for ! � � � � � 1,
if and only if any set of at most � closed subsets of X (of arbitrary power if �
= 1) such that every sub-family of power less than � has non-empty intersection
(�-intersection property), has itself non-empty intersection. [�; !]-compactness and
[1; �]-compactness are usually called initial �-compactness and �nal �-compactness,
respectively.

The reader should be aware that the notation utilized in model theory for [�; �]-
compactness, which we will use in this paper, reverses the notation utilized in the
topological literature.

[1; !]-compactness is (full) compactness, [!; !]-compactness is countable com-
pactness, and [1;!1]-compactness is the Lindelöf property. Although [�; �]- com-
pactness does not transfer up or down, for example, ! with the discrete topology is
trivially [!1; !1]-compact but not [!; !]-compact and (!1; <) with the order topology
is [!; !]-compact but not [!1; !1]-compact, there are some straightforward transfer
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relations:

LEMMA 1.2. i) X is [�; �]-compact if and only if it is [�; �]-compact for any
� � � � �.

ii) If X is [cof(�); cof(�)]-compact then it is [�; �]-compact.
iii) If f : X! Y is continuous and X is [�; �]-compact, then f(X) is [�; �]-compact.

Proof. i) One implication is trivial. For the other, notice that a counterexample
to [�; �]-compactness with � minimum is a counterexample to [�; �]-compactness; (ii)
and (iii) follow from the de�nitions. �

The product of [�; �]-compact spaces does not need to be [�; �]-compact, even
for squares. For example, the real line with the topology generated by the intervals
[a,b) is a Lindelöf space but its square is not (see Willard 1968 [W]), and the product
of two countably compact spaces is not necessarily countably compact (see Vaughan
1974 [V1], Hart and Mill 1991 [HM]).

On the positive side, Stephenson and Vaughan 1974 [SV] have shown that [�; !]-
compactness is preserved by products if � is a strong limit singular cardinal, and
starting with Scaraborough and Stone 1966 [SS] a deep study of spaces with count-
ably compact or initial �-compact products, and related properties, has been carried
out by Vaughan 1974 [V1], Ginsburg and Saks 1975 [GS], Saks 1978 [Sa], García-
Ferreira 1990 [GF], among others. The main tools in this study have been the notion
of ultra�lter convergence and compactness, introduced by Berstein 1970 [Be] for ul-
tra�lters over !, and extended later by Saks to ultra�lters over uncountable powers.

De�nition 1.3. Let U be an ultra�lter over a set I, then an I-family fai : i 2 Ig
in a topological space X is said to U-converge to a point x 2 X if and only if
fi 2 I : ai 2 V g 2 U for any open neighborhood V of x. We say also that x is
an U-limit of fai : i 2 Ig, and write fai : i 2 Ig !U x. A space X will be called
U-compact if and only if any I-family of X has an U-limit in X.

U-limits are not necessarily unique since we do not assume the Hausdor¤ condi-
tion. Evidently, fai : i 2 Ig !U x if and only if x is an adherence point in X of the
ultra�lter a(U) = fS � X : fi 2 I : ai 2 Sg 2 Ug in the ordinary sense of topology.
Hence, X is fully compact if and only it is U-compact for any ultra�lter. Contrasting
with [�; �]-compactness, U-convergence and compactness are preserved by products.

LEMMA 1.4. i) f(ai;�)� : i 2 Ig !U (a�)� in ��X�, if and only if fai;� : i 2 Ig !
a� in X� for each �.
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ii) ��X� is U-compact if and only if each X� is U-compact.

In fact, it follows from Saks work for a related compactness property C[�;�] con-
cerning the existence of complete accumulation points (property in general stronger
than [�; �]-compactness but equivalent to it for � = ! or � = � regular), that pro-
ductive [�; !] -compactness of a space is equivalent to U-compactness with respect
to particular families of uniform ultra�lters depending on the space. García-Ferreira
has shown that U-compactness with respect to a single decomposable ultra�lter on
� is enough. We sumarize this in the next proposition. The last item also follows
immediately from Saks work but we have not seen it stated anywhere.

PROPOSITION 1.5 i) (Th. 6.2, Saks 1978 [Sa]; Th. 5.13, Stephenson 1984 [St])
All powers of X are [�; !]-compact if and only if there is a sequence of ultra�lters
fU� : ! � � � �g; U� uniform over �, such that X is U�-compact for each �.
ii) (Prop. 2.15, García-Ferreira 1990 [GF]). All powers of X are [�; !]-compact if

and only if there is a decomposable ultra�lter U over � such that X is U-compact.
iii) For regular �, X has [�; �]-compact powers if and only if X is U-compact for

some uniform ultra�lter U over �.

By Donder 1988 [D], it is consistent that a uniform ultra�lter over � is always
decomposable. Therefore, by (ii) and (iii) above, it is consistent that productive [�; �]-
compactness for a regular cardinal � is equivalent to productive [�; !]-compactness.

In order to obtain the Abstract Compactness Theorem (in the next section), we
extend the above characterizations to [�; �]-compactness for arbitrary �; �; utilizing
(�; �)-regular ultra�lters.

De�nition 1.6 (cf. Keisler 1964 [Ke]). An ultra�lter U over a set I is (�; �)-regular
if and only if there is a family F � U of power � such that \J = Ø for any sub-family
J of power �: A (�; !)-regular ultra�lter is usually called �-regular in the literature.

It is easy to verify that a uniform ultra�lter over � is (�; �)�regular, and a de-
composable ultra�lter over � is (�; �)�regular for any regular cardinal � � �.

Call a class T of spaces productively [�; �]-compact (in short, p-[�; �]- compact)
if the product of any family of spaces in T is [�; �]-compact. In particular, a space
X will be productively [�; �]-compact if X� is [�; �]-compact for any cardinal �. The
next theorem is our main result.

THEOREM 1.7. The following are equivalent for any class T of topological spaces:
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i) T is productively [�; �]-compact.
ii) There exists some (�; �)-regular ultra�lter U such that all the spaces in T are

U-compact ( U may be taken always over �<�, or uniform over � if this cardinal is
regular and equal to �:)

The proof is defered to the last section of the paper but we note now the following
immediate consequences:

COROLLARY 1.8. Let T be a class of topological spaces.
i) If � is smaller than the �rst measurable cardinal (or arbitrary if no such cardinal

exists) and T is p-[�; �]-compact, then it is p-[!; !]-compact.
ii) If T is p-[�+; �+]-compact, then it is p-[�; �]-compact.
iii) Let cof(�) � � or � = 1. Then T is p-[�; �]-compact if and only if it is

p-[�; �]-compact for any regular cardinal �, � � � � �.

Proof. i) Let U be the (�; �)-regular ultra�lter over �<� given by the Theorem
such that X is U-compact. By (�; �)-regularity, U is non principal. If U is not
(!; !)-regular, then it is !-complete. But the smallest set carrying a !-complete
non principal ultra�lter is measurable, and �<� is below the �rst measurable by
hypothesis.

ii) A uniform ultra�lter on �+ is (�; �)-regular by results of Kanamori 1976 [K]
and Kunen-Pikry 1971 [KP].

iii) If the compactness condition holds for regular �, � � � � �, then p-[�; �]-
compactness follows from (ii) for � � � < � because � � �+ � � and for � = � by
Lemma 1.2(ii). Now apply Lemma 1.2(i). �

II. SPACES OF STRUCTURES

For the de�nition of model theoretic logic see Lindström 1969 [L] or Ebbinghaus
1985 [E]. The domain of a logic L, Dom(L), is the class of �rst order vocabularies �
for which the class of sentences L(�) is de�ned. Dom(L) will be assumed to allow
expansions of vocabularies by arbitrarily many monadic relation symbols and con-
stants, and to be closed under disjoint unions. L(�) will be always a set; that is,
we consider small logics only. Appart of Lindström�s axioms ((i)-(v) in [E]), we only
assume closure under negations, conjunctions, and relativizations. Aj� and AjPA
will denote, respectively, the reduct of a structure A to a sub-vocabulary � ; and the
substructure of A induced by the subset PA where P is a monadic relation symbol:
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For each � 2 Dom(L), a logic L induces a topology in the class E� of structures of
type �; having for open basis the classes Mod(�); � 2 L(�): The topologically closed
classes are then the L-axiomatizable classes Mod(T ) for some theory T � L(�). The
resulting large topological space of structures will be denoted E�(L). Although it is
proper class, its basis is parametrized by the set L(�) of sentences and so the topology
is also parametrized by a set. Therefore, we may quantify over open classes, classes
of open classes, etc., via the parameters, and apply without misgivings most of the
ordinary concepts and results of topology to these spaces. The spaces E�(L) are
uniformizable by the canonical uniformity having for basis the classes:

UF = f(A;B) 2 E2� : A j= � if and only if B j= �, for any � 2 Fg.

where F runs through the �nite theories F � L(�), cf. Caicedo 1993 [C1], 1995 [C2].

De�nition 2.1. A logic L is said to be [�; �]-compact if whenever fT�g�<� is a family
of theories in L(�) such that [�<� T�� is satis�able for any � < �, then [�<� T� is
satis�able.

The above property is just topological [�; �]- compactness of the spaces E�(L).
The equivalence between this topological notion and the original de�nition of [�; �]-
compactness in Makowsky and Shelah 1983 [Ma-Sh] was �rst noticed by Mannila
1983 [M]. It holds for any logic satisfying the closure conditions we have imposed on
Dom(L).

Given a family of vocabularies f�i : i 2 Ig in Dom(L), let �i�i be the disjoint
union of the vocabularies �i [ fPig where each Pi is a monadic symbol not in �i.
Dom(L) is closed under this operation. The function

F : E�i�i ! �iE�i , F (A) = ((AjPAi )j�i)i2I

is onto because (Ai)i2I = F (�iAi), where �iAi = ([ijAij; Ai; :::)i2I is the structure
of type �i�i having for universe the union of the universes of the Ai, with each �i
interpreted by the relations of Ai and Pi interpreted by the universe jAij: Our key
observation is the following:
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LEMMA 2.2. For any logic L; F : E�i�i(L)! �iE�i(L) is (uniformly) continuous.
Hence, L is [�; �]-compact if and only if the family of topological spaces fE�(L) : � 2
Dom(L)} is productively [�; �]-compact.

Proof. Any open subbasic of the product topology in �iE�i(L) has the form
Uj;� = f(Ai)i : Aj j= �g with j 2 I and � 2 L(�j). Hence, F�1(Uj;�) = fA :
(AjPAj )j�j j= �g = fA : A j= �Pjg which is a basic open class due to the reduct axiom
and the existence of relativizations in L. By Lemma 1.2 (iii), the [�; �]�compactness
of the space E�i�i(L) is inherited by the product space �iE�i(L): �

Now, expressing U-convergence in the spaces E�(L) in terms of the basic open
classes Mod(�) and using that the logic has negations, we have for any ultra�lter U
over I and structures A; Ai (i 2 I) in E�(L)

fAi : i 2 Ig !U A if and only if::A j= �, fi 2 I : Ai j= �g 2 U for any � 2 L(�)
(1)

(without negations we would have only left to right implication). Therefore, equiva-
lence (1) in the Abstract Compactness Theorem applied to sentences yields immedi-
ately fAi : i 2 Ig !U A

�, and so the spaces E�(L) must be U-compact if U is related
to L. In fact,

LEMMA 2.3. A ultra�lter U is related to a logic L if and only if the spaces E�(L)
are U-compact for any � 2Dom(L).

Proof. Assume that the spaces E�(L) are U-compact. Given a family of structure
fAi : i 2 Ig of type �, consider the vocabulary ��iAi = � [ fcf : f 2 �iAig, where
each cf is a constant symbol, and de�ne for each �xed j 2 I the following expansion
of type ��iAi of Aj :

A�j = (Aj; f(j); :::)f2�iAi

where cf is interpreted by f(j). Since E��iAi (L) is U-compact by hypothesis, the
family fA�jgj has an U-limit (A�; af ; :::): By (2) this means:

A� j= �[af ; :::], (A�; af ; :::) j= �(cf ; :::)

, fj 2 I : A�j j= �(cf ; :::)g 2 U , fj 2 I : Aj j= �[f(j); :::]g 2 U (2)
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for all �(x; :::) 2 L(�): Applied to atomic formulae equivalence (3) yields an em-
bedding f=U 7! af from �iAi=U into A�: Therefore, A� may be taken to be a true
extension of �iAi=U with af = f=U ; and (3) becomes then condition (1), showing
that U is related to L. �

Theorem 1.7 applied to the family of spaces T =fE�(L) : � 2 Dom(L)g; together
with lemmas 2.2, 2.3, gives the topological proof of the Abstract Compactness
Theorem.

After Lemma 2.2, any property of productive [�; �]-compactness of topological
spaces may be translated directly to [�; �]-compactness of logics, without passing
by the Abstract Compactness Theorem. For example, the following results from
Makowsky-Shelah 1983 [Ma-Sh] are direct applications of the respective parts of
Corollary 1.8. It follows from this topological proof that they hold for monadic
logics, since Lemma 2.2 only needs expansions of vocabularies by monadic predicate
symbols and relativizations of sentences to monadic predicates. Their original proofs
rely instead in the possibility of expanding vocabularies by non monadic relation
symbols.

Example 2.4.
i) (Lemma 2.6 [Ma-Sh]) If � is below the �rst measurable cardinal then [�; �]-

compactness of a logic implies [!; !]-compactness.
ii) (Th. 3.10 [Ma-Sh]). [�+; �+]-compactness of a logic implies [�; �]-compactness.

iii) (Th. 3.11 [Ma-Sh]). For regular �, [�; �]-compactness of a logic for all regular
�, � � � � �, implies [�; �]-compactness.

Remark 2.5. The condition on expansion of vocabularies by constants is not needed
in Lemma 2.2, and it may be replaced by closure under the existential quanti�er in
Lemma 2.3 if the formulae of the logic contain only �nitely many free variables because
then the constants may be simulated by monadic predicates.

Remark 2.6. To see that the Abstract Compactness Theorem may be stated in
terms of ultrapowers as in [Ma-Sh] when L allows expansions of vocabularies by binary
relation symbols and relativization to a variable of a binary relation (for example if L
is closed under substitutions), it is enough to note that the existence of an extension
satisfying (1) for any U-ultrapower implies the same for any U-ultraproduct. Given a
family fAi : i 2 Ig � E�, code it in the single structure A = (tiAi;tiQAi ; :::; I; R)Q2�
containing I as a predicate, and the relationR = [i2Ifig�Ai so thatAjfx : R(i; x)g =
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Ai. If the extension B� � AI=U satis�es (1), de�ne P � = fv 2 B� : B� j= R[g=U ; v]g
where g 2 AI is the identity function. Then �iAi=U � B�jP �, and for any formula
�(x; :::) 2 L(�) and function f 2 �iAi:

B�jP � j= �[f=U ; :::], B� j= �[f=U ; :::]fv:R(g=U ;v)g

, fi 2 I : Ai j= �[f(i); :::]fv:R(i;v)g 2 U

, fi 2 I : Aijfv : R(i; v)g j= �[f(i); :::)]g = fi 2 I : Ai j= �[f(i); :::]g 2 U :

Therefore B�jP � is the desired extension of �iAi=U satisfying (1).

III. CHARACTERIZATION OF PRODUCTIVE [�; �] -COMPACTNESS

In this section we prove Theorem 1.7 in a wide version (Theorem 3.4 below) in-
cluding characterizations of productive [�; �]-compactness in terms of small products,
which generalize similar known results for initial �-compactness.

LEMMA 3.1. If X is U-compact for a (�; �)-regular ultra�lter U , then X is [�; �]-
compact.

Proof. Let fI�g�<� be a family of elements of U such that the intersection of any
� of the I��s is empty. We may assume I = I0. Given a family fF�g�<� of closed sets
in X with the �-intersection property, de�ne Ft = \t2I�F� for each t 2 I. This set
is non-empty, because t belongs to less than � many sets I� by hypothesis. Choose
at 2 Ft, then J� = ft 2 I : at 2 F�g 2 U because J� � I� by construction of Ft. By
hypothesis, fatgt2I U-converges to some x of X; hence, given an open neighborhood
V of x, J = ft 2 I : at 2 V g 2 U . Therefore, ft : at 2 V \ F�g = J \ J� 2 U for any
�. Consequently, this set is non-empty, showing that x belongs to the adherence of
any F�. �

De�nition 3.2. Let P (�; �) = fS � � : jSj < �g; hence, jP (�; �)j = �<�:

LEMMA 3.3. i) If X is [�; �]-compact, then every I-family in X, with I = P (�; �);
U-converges for some (�; �)-regular ultra�lter U over I (which depends on the family).
ii) If � is a regular cardinal and X is [�; �]-compact then every �-family in X

U-converges for some uniform ultra�lter U over �.
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Proof. i) Given fat : t 2 Ig in X, let At = fas : t � sg. The family of closed sets
fcl(At) : t2 P (�; !)g has the �-intersection property, becauseT

i<� cl(Ati) � cl
�T

i<� Ati
�
= cl

�
A[i<�ti

�
6= Ø ,

whenever � < � since
S
i<� ti 2 I. By [�; �]-compactness there is an element x 2T

t2P (�;!) cl(At). Hence, V \At 6= Ø for any neighborhood V of x and any t 2 P (�; !).
This implies that a�1(V ) \ [t) = fs 2 I : as 2 V and s � tg is non empty and in
fact the family F = fa�1(V ) \ [t) : V open neighborhood of x; t 2 P (�; !)g has the
�nite intersection property. Extend F to an ultra�lter U over I. By construction,
fas : s 2 Ig U-converges to x. Moreover, for any ordinal � 2 � : I� = fs 2 I :
� 2 sg = a�1(X) \ [f�g) 2 U . But the intersection of �-many distinct I��s is empty
because no s 2 I may contain � many ordinals. This shows that U is (�; �)-regular.
ii) For any �-sequence (a�)�<� in X, let A� = fa� : � � �g. By regularity of �

and [�; �]-compactness, there is x 2 \�<�cl(A�). Hence, V \ A� 6= Ø for any � 2 �
and open neighborhood V of x. By trans�nite induction and regularity of � we get
an increasing sequence of ordinals f� :  < �g such that a� 2 V \A� for all  < �.
This means that all sets in the family F = fa�1(V )\ [�) : x 2 V; � < �g have power
�; hence, F may be extended to an uniform ultra�lter U over �, such that (a�)�2�
U-converges to a. �

THEOREM 3.4. The following are equivalent for any class T of topological spaces:
i) T is productively [�; �]-compact.
ii) There exists some (�; �)-regular ultra�lter U such that all the spaces in T are

U-compact (U may be taken over P (�; �), or uniform over � when � = � is regular).
iii) Any product of 22

jP (�;�)j
many copies of spaces in T is [�; �]-compact.

iv) (If cof(�) � �) Any product of 22
�
many copies of spaces in T is [�; �]-

compact.

Proof. (ii) ) (i). If each Xr is U-compact then �rXr is U-compact by Lemma
1.4(ii), and by (�; �)-regularity of U it follows from Lemma 3.1 that �rXr is [�; �]-
compact. This works also if U is uniform over � = � because then it must be
(�; �)-regular
(i) )(iii) ) (ii). Assume that any product of 22

jIj
many spaces in T is [�; �]-

compact, but there is no (�; �)-regular ultra�lter U over I = P (�; �) such that all the
elements of T are U-compact. Let � be the family of all (�; �)-regular ultra�lters over
I and choose for each U 2 � an I-family faU ;i : i 2 Ig in some space XU 2 T which
does not U-converge. For each i, let �i = (aU ;i)U 2 �U2�XU = X

�. As � has power
at most 22

jIj
, this space is [�; �]-compact by hypothesis; then by Lemma 3.3, there is

an ultra�lter W 2 � such that f�i : i 2 Ig W-converges to some � = (aU)U 2 X�.
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By the continuity of the W-projection (Lemma 1.4 (i)), faW;i : i 2 Ig W-converges
to aW in XW , a contradiction.

(iv) ) (i). First assume that � = � is regular, then as in the previous proof,
working with uniform ultra�lters over I = �, utilizing Lemma 3.3 (ii), and recalling
that a uniform ultra�lter on � is (�; �)-regular, we get (ii) and a fortiori (i). Now, if
cof(�) � � and � is regular, � � � � �; then the hipotesis implies that the product
of 22

�
spaces in T is [�; �]-compact, and by the previous observation T is productively

[�; �]-compact. Hence X is p-[�; �]-compact by Corollary 1.8(iii) which depends only
on the equivalence (i) , (ii), already proven.�

Notice that the equivalence (i),(iv) of the the previous theorem for the cases
� = ! or � = � regular follows already from Th. 2.3 in Saks 1978 [Sa]. Making
T = fXg; we obtain generalizations of Th. 5.14 in Stephenson 1984 [St], and Prop.
2.15 in García-Ferreira 1990 [GF]:

COROLLARY 3.5. The following are equivalent for any topological space X:
i) X� is [�; �]-compact for all �:
ii) X is U-compact for some ultra�lter U (over I = P (�; �), or uniform over �

if � = � is regular).

iii) X22
jP (�;�)j

is [�; �]-compact ( X22
�

is [�; �]-compact, if cof(�) � �).
iv) X jXjjP (�;�)j is [�; �]-compact ( X jXj� is [�; �]-compact, if cof(�) � �).

Proof. Only (iv) ) (i) needs proof. In the proof of Theorem 3.4, (iii) ) (ii),
(iv) ) (i), one family fai : i 2 Ig of X may serve as counterexample for the non
convergence of various ultra�lters U over I; hence, we need to take the factor X in
the power X� only once for each possible family: That is, X� = X jXjjIj. �
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in Theorem 3.4. The main results of this paper were obtained while visiting the
Universidade Estadual de Campinas, Brasil, in 1992, in the course of a seminar on
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