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Abstract

‘We consider the Godel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility
relation are infinitely valued over the standard Godel algebra [0,1], and prove strong completeness of the Fischer Servi
intuitionistic modal logic IK plus the prelinearity axiom with respect to this semantics. We axiomatize also the bi-modal
analogues of classical 7, $4 and S5, obtained by restricting to models over frames satisfying the [0,1]-valued versions of the
structural properties which characterize these logics. As an application of the completeness theorems we obtain a representation
theorem for bi-modal Godel algebras.
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In a previous paper ['a], we considered a semantics for Godel modal logic based on fuzzy Kripke
models where both the propositions and the accessibility relation take values in the standard
Godel algebra [0,1], we call these Godel-Kripke models, and we provided strongly complete
axiomatizations for the uni-modal fragments of this logic with respect to validity and semantic
entailment from countable theories. The systems G and G¢ axiomatizing the (J-fragment and the
O-fragment, respectively, are obtained by adding to Godel-Dummett propositional calculus the
following axiom schemes and inference rules:

go: (e — ¥)— (e — Oy) Go: Olp V) — (CpvOoy)
==y — O——¢ O — =0
From ¢, infer Cp =L

From ¢ — ¢, infer O — O,

These two logics diverge substantially in their model theoretic properties. Thus, G does not have
the finite model property while G does, and the first logic is characterized by models with {0,1}-
valued accessibility relation (accessibility-crisp models) while the second one does not. Similar
results were obtained for the uni-modal Godel analogues of the classical modal logics T and S4
determined by Godel-Kripke models over frames satisfying, respectively, the [0,1]-valued version
of reflexivity, or reflexivity and transitivity. The axiomatization of the uni-modal Godel analogues
of §5 remains open.
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2 Bi-modal Gédel logic

It is the main purpose of this article to show that the full bi-modal logic based on Gédel-Kripke
models is axiomatized by the system G that results by adding to the union of G and G¢ the
Fischer Servi’s connecting axioms [[14]:

A= ¥)— B —OY)
(Cp—0y)—Dlp— V),

and to extend this completeness result to the bi-modal Godel analogues of classical 7', S4, S5 and
related systems.

We discuss briefly at the end of the article an embedding of our semantics into algebraic semantics
for G and its extensions, and utilize our completeness theorem to show a functional representation
theorem for bi-modal Godel algebras.

The many valued Kripke interpretation of bi-modal logic utilized in this article was proposed
originally by Fitting [E], [IE], with a complete Heyting algebra as algebra of truth values, and he
gave a complete axiomatization assuming the algebra was finite and the language had constants for
all the truth values. See also [Iﬂ] and [Eﬁ]. Bou, Esteva and Godo [E] have proposed utilizing this
kind of interpretation for general algebras in the study of fuzzy modal logics. Our methods of proof
do not seem to extend easily, however, to algebras distinct from the Godel algebra [0,1], and we
do not know any other completeness result for this type of semantics for a fixed algebra H, except
Fitting’s result quoted above and Metcalfe and Olivetti completeness of analytic Gentzen systems
for G and Go ].

Gr¢ is equivalent to the system /K, proposed by Fischer Servi [@] as the intuitionistic counterpart
of classical modal logic K, plus the prelinearity axiom: (¢ — ¥)V (¥ — ¢). Similarly, the Godel
analogue of bi-modal S5 is equivalent to the system MIPC of Bull [EI] and Prior [@] plus prelinearity.

IK and its extensions have been extensively studied, either by means of classical Kripke models for
intuitionism equipped with extra relations commuting with the order to interpret the modal operators
([Iﬁ], [Iﬁ], 1, [29], [@], [Iﬂ], [ﬂ], [IQ]), or by means of algebraic interpretations, specially in the
case of MIPC, known to be complete for values in monadic Heyting algebras ([EI], ], ], [EI],
[E]). A major result is that both logics enjoy the finite model property under these semantics. Clearly,
G and its modal extensions inherit similar semantics, but those interpretations do not have the
standard character of Godel-Kripke semantics relevant to fuzzy logic, and it does not seem possible
to derivate our results from their properties. For example, the formula [J——6 — ——=[J0 has finite
counter-models with respect to those semantics but not for Godel-Kripke semantics.

1 Godel-Kripke models

The language Lo (Var) of propositional bi-modal logic is built from a set Var of propositional
variables, connective symbols V,A,—, 1 and the modal operator symbols [J and <. Other
connectives are defined as usual: T:=¢p—> ¢, ~¢:=¢p— L, o>V :=(p— V)AW — ¢). We will
write L if the set Var is understood.

Recall that a linear Heyting algebra, or Godel algebra in the fuzzy literature, is a Heyting algebra
satisfying the identity (x = y) Y (y = x) = 1. The variety of these algebras is generated by the standard
Godel algebra [0, 1], the ordered interval with its unique Heyting algebra structure. Here, the symbols
-, =, Y, denote, respectively, the meet, residuum (implication), and join operations of Heyting
algebras. For convenience, we take Y as primitive although it is definable in Godel algebras as
XYy=((r=)=y) (=1 =1)).
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DEFINITION 1.1

A Godel-Kripke model (GK-model) will be a structure M = (W, S, e) where W is a non-empty set of
objects that we call worlds of M, and S: W x W — [0, 1], e: W x Var — [0, 1] are arbitrary functions.
The pair (W, S) will be called a GK-frame.

The function e: W x Var — [0, 1] associates to each world x a valuation e(x, —): Var — [0, 1] which
extends to e(x,—): Lo (Var)— [0, 1] by defining inductively on the construction of the formulas
(we utilize the same symbol e to name the extension):

e(x,1):=0

e(x,p A ) :=e(x,p)-e(x,¥)
e(x,pVy):=elx,p)Yelx,¥)
e(x,p—>¥)=e(x,p)=e(x,y)
e(x,0¢):=infyew {Sxy=e(y,p)}
ex, O9) = supycyy (Svy-e(v. 9)).

Truth, validity and entailment are defined for ¢ € Ly, T € L¢ as follows:

@ is true in M at x, written M =, ¢, if e(x,p)=1.

@ is valid in M, written M =g, if M |=, ¢ at any world x of M.

¢ is GK-valid, written =gk ¢, if M |=¢ for any GK-model M.

T =gk ¢ if and only if for any GK-model M and any world x in M:

M =406 for all 0 e T implies M =, .

It is routine to verify that all axiom schemes corresponding to identities satisfied in [0, 1]; that is,
the laws of Godel-Dummett logic, are GK-valid. In addition

ProposITION 1.1
The following schemes are GK-valid:

Kp) Ul —y)— Lo —0Uy)
Ko) ClpVy)— (CpvOy)
(Fo) =OL

(FS1) Ol = ¥)— (Do — Ov)
(FS2) (Cop— 0Oy)— O(p— ).

PrROOF. Let M =(W,S,e) be a GK-model. (Km): By definition and properties of the residuum,
e(x, (g — ¥))-e(x,Up) <(Sxy=(e(y, )= e(y,¥))-(Sxy=e(y,9)) <(Sxy=e(y,¥)) for any y €
W. Taking the meet over y in the last expression: e(x,[J(¢ — ¥))-e(x,0p) <e(x,dyr), hence
e(x,U(@ — ) <e(x,Up — Uy). (Ko ): By distributivity and properties of the join: e($(x, o V) =
sup, {Sxy-(e(v. @) Y e(v, Y1)} = sup,{Sxy-e(y. @)} Y supy {Sxy-e(y,¥)}. (Fo): e(x,OL)=sup,(Sxy-
0}=0. (FS1): Sxy-e(x,0¢)-e(y, ¢ — ¥) <Sxy-(Sxy=e(y,9))-(e(y,p) = e(y,¥)) <Sxy-e(y,¥)) <
e(x, Ovr). Therefore, Sxy-e(y,o — ¥) <(e(x,0¢)=>e(x,Ov)), and taking the join over y in the
left-hand side, we have e(x, (@ — ¥)) <e(x, Op — OY). (FS2): e(x, O — DY) < [Sxy-e(y, )=
(Sxy=>e(y, ¥ )] =[Sxy-e(y,p)=e(y, V)] =(Sxy=e(y,¢ = ¥)). u

REMARK. Utilizing any complete Heyting algebra H instead of [0,1] in the above definitions,
we obtain H-valued Kripke models (HK-models) and corresponding notions of HK-validity and
entailment. Then the laws in Proposition [[[T] are HK-valid, as are the laws of the intermediate
propositional logic determined by H.
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4 Bi-modal Godel logic

2 A bi-modal calculus

Let G be some axiomatic version of Godel-Dummett propositional calculus; that is, Heyting calculus
plus the axiom (¢ — ) V(¥ — ¢), and let g denote deduction in this logic. Let £(X) denote the
set of formulas built by means of the connectives A,—, and L, from a given set X. For simplicity,
the extension of a valuation v:X — [0,1] to £(X) according to the Heyting interpretation of the
connectives will be denoted v also. It is well known that this system is complete for validity with
respect to these valuations and the distinguished value 1. We will need the fact that it is actually
sound and complete in the following stronger sense (see [|a], Prop. B.I):

PROPOSITION 2.1

(i) If TU{p} € L(X), then T g ¢ implies inf v(T) <v(gp) for any valuation v:X — [0, 1]. (i) If T is
countable, and T¥g ¢;, V..V ¢;, for each finite subset of a countable family {¢;}; there is a valuation
v:L—[0,1] such that v(8)=1 for all f € T and v(¢;) < 1 for all i.

For an example that completeness for [0,1]-valued entailment cannot be extended to uncountable
theories see Section 3 in [|a] and also Proposition Bl below.

DEFINITION 2.1

Groo is the deductive calculus obtained by adding to G the schemes of Proposition [L1] and the
inference rules:

(NRp) From ¢ infer Op

(RNg) From ¢ — Y infer O — Oy,

Proofs with assumptions are allowed with the restriction that NR and RN¢ may be applied only
when the premise is a theorem; =g, will denote deduction in this system.

The restriction on the application of the rules allows the Deduction Theorem that we will utilize
freely without quoting it:

LEMMA 2.1
T, Y gy @ implies Thg, v — @.

An alternative axiomatization of G is obtained by replacing FS1 with the scheme
(P) Ul = ¥) — (Co— OY)

and deleting the rule RN¢.

Indeed, Fgy, Co—> (= V)—=> V) Fguo Co—> Ul@—v)—> V) Fgu, Do— ) —
(Cep — O) by Heyting calculus, RN¢ and FS1. On the other hand, P + NR deduce trivially RN¢,
and FS1 is deduced from (Goo ~{FS1,RNo})+{P} as follows: Fp— O(¢— ¥)— ¥)
by Heyting calculus plus NRg and Kg; thus FOp— (O(p—¢)—> <) by Poand
F (9 — ) — (e — Or) by Heyting calculus.

THEOREM 2.1 (Soundness)

Trg, @ implies T =gk ¢.

PrOOF. Clearly, the Modus Ponens rule preserves truth at every world of any GK-model M, and the
rule NR preserves validity (truth at all worlds) in any model since M = ¢ implies M =g, trivially.

Similarly, M |=¢ — i implies Sxy-e(y,p) <Sxy-e(y,¥) for all x,y, and thus M =< — Oy The
rest follows from Proposition[[ 1l [ |

It is easy to provide counterexamples to the validity of —=[1—6 — <8 and —=<O—60 — [J6; thus the
modal operators are not interdefinable in G in the classical way. In fact, they are not interdefinable
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in any manner. For example, the invalid formula [J=—0 — ——=[# is not expressible in terms of <
alone because the <-fragment has the finite model property for GK-semantics with respect to the
number of worlds, while this formula has no finite counterexample (cf. [E], Prop.B.1).

The following are some theorems of Go. The first one is an axiom in Fitting’s systems in [E],
the next two show the fact claimed in the introduction that G is the union of G and G¢ plus the
Fischer Servi axioms, the fourth one will be useful in our completeness proof and is the only one
depending on prelinearity.

T1. =00 <« [0—6

T2. ==016 — —-—0

T3. O==p — =0

T4. (Op— Ov)vO((9— ¥)— )

To see this, write temporarily I for g, . (T1) =08 ($6 — OL) =6 — L) by Heyting calculus
and FS2. Similarly, ¢6 F (=0 — L) HO-0 — &L F—=0-0 by Heyting calculus, RN¢, and FS2;
thus, [0—0 =<0 by Heyting calculus. (T2) (O — L) —» L HOp > <0 1L)—» 1L FO(p— L) —-0OL
FO((p — L)— 1) by Fo, FS2 and FS1. (T3) (=g — L)F(O—¢p — 1) (=09 — 1) by FS1,
T1and F¢. (T4) By prelinearity: - (Ogp — $(@ — ¥)) VvV (O(p — ) — Og), but Do — Ol — ¢r) -
Up — (e — Oy e — Oy by FS1; moreover, O(¢ — ) — Ue FU((@ = ¥) — @) FU((p —
¥)— ) by FS2, Heyting calculus and RN.

To prove the completeness of ¢, , we will utilize the following convenient reduction of Goo to
pure Godel calculus:

LEMMA 2.2
Let ThGm be the set of theorems of G, with no assumptions, then for any theory T and formula
¢ in Loo :ThHgy, ¢ if and only if TUThGOo g @.

PrROOF. The rules NR, RN¢ are applied only to formulas in 7hGrc, and this set is closed under
those rules. |

REMARK. G is essentially the Fischer Servi system /K ([Iﬂ], [IE]) plus the prelinearity axiom.
Moreover, Tk ¢ implies T =gk ¢ for any complete H. This provides a new interpretation of /K
under which one would expect this logic to be complete.

3 Completeness

In this section, we prove strong completeness of G with respect to entailment from countable
theories in Godel-Kripke semantics.

We will obtain a finer result for theories 7 C L closed under the rule NRg (T'Hg 6
implies Ttg, [J6). Call these theories normal. It follows from the observation on an alternative
axiomatization in the previous section that a normal theory is also closed under the rule RN . Clearly,
the empty theory is normal.

Our strategy is to show first completeness for entailment from finite theories (weak completeness),
and utilize a first order compactness argument to lift this to countable theories. To achieve the first
goal, we define for each normal theory ¥ and finite fragment F C L (a subset closed under
subformulas and containing the formula L) a canonical model My r in which ¥ NF will be valid.

Let X :={J0,<0 :60 € Lo} be the set of formulas in £ beginning with a modal operator; then
Lo (Var)= L(Var UX). That is, any formula in L (Var) may be seen as Heyting calculus formula
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6 Bi-modal Gadel logic

built from the set of propositional variables Var UX. The canonical model My f= (W=, 8F ey is
defined as follows:

e WZ is the set of valuations ve[0,11%YX such that v(ZUThGOo)=1, where £ U+ThGo is
considered a subset of L(VarUX).

o SEPyw=infy cp{(W(OY) = w()) - W) = v(OY))}.

o ¢'(v,p)=v(p) for any p € Var.

Weak completeness will follow from the following lemma which has a rather involved proof.

LEmMMA 3.1
eF(v,<p)=v(<p) for any ¢ € F and any ve wx.

Prook. For simplicity, write W for W>. We prove the identity by induction on the complexity of
the formulas in F, considered now elements of L (Var). For L and the propositional variables in
F the equation holds by definition. The only non-trivial inductive steps are: e (v, Og)=v(0¢) and
eF(v, Op)=v(Op) for Op, Op € F. By the inductive hypothesis we may assume that eF(v’, ©)=V'(¢)
for every v/ € W; thus we must prove

inf (v =/ (p)} =v(0p)) 3.1
vVew

sup (ST -V (9)} =v(Op)) (3.2)
vVeWw

By definition, S¥w <(w(Op)=V'(¢)) and SFw < (V' ()= v(C@)) for any g eF and Vv e W;
therefore, v(Ogp) < (ST =V/(¢)) and SF' v/ (¢) <v(Og). Taking the meet over V' in the first
inequality and the join in the second,

w(Op) < inf {SEv/ =V (9)}, sup (ST -V (9)} <v(Og).
Vew vVew

Hence, if v(Ogp) =1 and v(<¢) =0 we obtain immediately (3.I) and (32). Therefore, it only remains
to prove the next two claims for Op, Op e F.

Claim 1
If v(Op)=a <1 and € >0, there exists a valuation we W such that SFyw > w(p) and w(p) <a+¢
(thus, (SFvw =>w(p))<a+e).

Claim 2
If v(Cp)=a >0 then, for any ¢ >0, there exists we W such that w(¢)=1 and SFyw>a—¢ (thus
w(g0)~SFvwza—8).

PROOF OF CLAIM 1. By definition of = in [0, 1], to grant the required conditions on w it is necessary
to find we W and pg such that ¢+¢&>pg>w(p) and for any 6 € F: v(00) <w(0) if w(0)<po,
w(0) <v(<Ch)if v(<$h) < po. This is achieved in two stages: first producing a valuation u € W satisfying
u(p) < 1 and the relative ordering conditions the w(0) must satisfy, conditions which may be coded
by a theory I'y y, and then moving the values u(6), 6 € F, to the correct valuation w by composing u
with an increasing bijection of [0,1]. Assume v(Og) =« < 1 and define (all formulas involved ranging
in Lo (Var))
Ly v={0:v(00)>a}U{0] — 02 :v(CO) <v(L6)}
U{(6y — 01) — 0 :v(<CO) < v(dBy)}.
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v u
4 L
v(oe) > o )— - u(e)
Y(op) = oc__"’é - u(8,)
v(0e,)
v(08,)- —+
v(08,) —+ u(e,)
v(oe,) 1+ q
< <

Obs: if v(¢6,) < o then u(e,) < u(e)

FIGURE 1. First translation.

Then we have v(LJ&) > « for each & €'y, .- for the first set of formulas by construction, for the second
because v(LJ(6] — 62)) > v(<$8) — L6,) = 1 by FS2, and for the third, because v(J6, — <$61) < 1 and
thus v(LJ((6, — 01) — 61)) =1 by T4. This implies that

Cpy, 2 |7‘g|:I<> ©.

Otherwise, §i,...,§,€ly, would exist such that §,...,8,XFg-, ¢. Hence, O&f,...,0&,
0¥ Fgg, Op by NR and K, but X =g ¥ by normality. Then O&, ..., O&, X, ThGre =g Op
by Lemma[22] and thus by Proposition 211 (i), and recalling that v(Z UThGo)=1,

a <infv({OEq,...,0&1UX UThGOo) <v(dp)=«,

a contradiction. Therefore, by Proposition 211 (ii) there exists a valuation u: Var UX — [0, 1] such
that u(I"y ,UX UThGhe)=1 and u(p) < 1. This implies the following relations between v and u,
that we list for further use (see Figure[D). Given 61,6,,03,

#1. If v(O0) > o then u(0) =1 (since then 6 €'y ;)

#2 If v($O1) <v(H) then u(61) <u(6y) (since then Oy — 6 Ty )

#3 If v(<$01) <v(67) then u(1) <u(,) or u(61) =u(92)=1 (since then (6, — 01) — 1) €y )
#4. If v(06,) > 0 then u(6,) > 0 (making 01 :=_L in #3 since u(L)=v(CL)=0).

For the next construction we need the finiteness of F'. Set B={v([J0):6 € F'}, for each b € B define
up=min{u(6):0 € F and v(L16)=b},

and then define a strictly descending sequence bg, b1, ...,by =0 in B as follows:
bp=«a
biry=max{beB:b<b; and uj <uy,}.

Pick formulas ¢; € F such that b; =v(Ug;) and up, =u(¢;). By finiteness of B, the inductive definition
ends with some by (which could be b in case u,, =0). To check that by =0, assume by =v(Ugy) >0,
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- g !
v u w
i 1 1
- Y .-
v(o8) > o u(e) 4 }
s, =y, HLo+e
v(08,)+ w1 u(y) {;Po= v(08,)
v(oe)=0=b,T roL=b,
P /] )
T u(M)=uy, :
v(ow)=reh)- 4 b, : 1o,
v(08)+ At 1.,
V(08,1 u(e,) 4 "2“
v(o8,) 1 A e by
Pn
big Upy g “obn

Styw > (o + €)

FIGURE 2. Second translation.

then up, =u(pn) >0 by property #4 above. But v( L) <v(Ogy) by RN and K and u(L)=0.
Thus, by minimality of u,, we cannot have equality; hence, v(L_L) <v(Cgy) and thus there exists
by+1 <by, a contradiction.

By construction, the sequence up,, up, , ... is also strictly descending with up) =uy <u(p) <1, and
it ends at 0 because v(LJ_L) <v(Uey) =0 and thus up, <u(L)=0 by minimality again.

Fix & > 0 such that @ +¢& < 1 and further define (taking min@=1)

po=(ax+¢&)- min{v(CO):0 e F, a <v(<$h)}
Pi+1=b; min{v(CO):0 €F, biy1 <v($O)} fori>1.

Notice that we have p; > b; by construction.
Summing up,

l>a+e>pg>byp=a>p;>b1>---->=py>by=0
1> upy > up, > --->up, =0.

Now pick a strictly increasing function g: [0, 1]+ [0, 1] such that (see Figure &)

g(H=1

g[[u()la 1)] = [057170)

gllup,, - up )1 =1biy1,pit1)-
Then the valuation w=gou satisfies w(X UThGOo)=1, and so it belongs to W. Moreover, w(p)=
g(u(p)) <po <a+e. It remains to show that SFyw > w(p). For any 6 € F:

(1) If u(@)=1 then w(f)=1 by definition of w; hence, v(LJ9) <w(#). In addition, v($8) > po,
otherwise v(<0) <a =v(gq), which would imply u(0) < u(¢g) < 1 by #2, a contradiction.

(ii) If w(9) € [up,, up, ) or u(@)=/[up,,1) then v(J9) <w(0) <v(<h). To see this notice first that
w(@) € [bj,p;) by definition of g. Now, for i>1, b; is the maximum v(Oy) with u(y) <up, .
Therefore, v((J0) <b; <w(0). In addition, for i=0, v((J0) <a=bg<w(f) by #1. Moreover, if
u(0) = up, =u(g;) then w(0)=>b; =v(Lyp;) <v(<4H) by the counter-reciprocal of #3 because uy, <1,
and if u(0) > up, then v(<GO) > v(Hg;) = b; by the counter-reciprocal of #2; hence, v($6) > p; > w().
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It follows form from (i,ii) that inf g p {v(J0) = w(0)} = 1 and inf g p {w(0) = v(<H)} > pg. Hence,
SFvw > po>w(p). This finishes the proof of Claim 1.

ProoF OF CLAIM 2. Again we code first in a relative consistence situation the minimal requirements
for w, to obtain u € W satisfying those requirements, and then transform u to the correct w by an
automorphism of [0,1]. Assume v(C¢)=o > 0 and define

Uy, = {0:v(C0) <a}
U{ = 91 :v(C9) < v(d) and v(OH) <o}
U{( — ) = 91 :v(CB) =v(P,) and v(O9) <al.

This set is non-empty because v(<$ L) =0. Moreover, for any & € Uy, , we have v($&) < a; for the first
set of axioms by construction; for the second because v(< (9 — 1)) < v(Hp — Ov) =v(O) <«
by FS1; and for the third because v(<C((9 — 92) — 91))) <v(( — 972) = O) <v((CP —
L) — Ov1)=v(O91) <a by FS1, FS2.

We claim that for any finite {§1,...,&} C Uy y:

¢, X606 E1V . VL

because, on the contrary, X g, Co— O(€1 V... VE) FGhe Co— (O&] V...V OEr) by normality
of ¥ and K¢, whence
O, B, ThGOe FOE V... v O,

and evaluating with v it would give: o =inf v({Op}UX UThGOo) < max{v(<CEr), ..., v(O&)} <,
absurd.

Therefore, there is a valuation u such that u(¢)=u(XUTGno)=1and u(§) < 1 foreach £ e Uy, ,,
which has the following consequences for any 6,601,6;:

##1. If v(O0) < then u(0) < 1 (because then 6 € Uy, )

##2. If v($O1) <v(06;) and v(<$CO1) < o then u(6) <u(,) (because 0, — 601 € Uy, .y)

##3. If v(O01) <v(J62) and v(OO) < a then u(01) <u(6) (because (6 — 62) — 01 € Uy, ,)

##4 If u(6,) =0 then v(O6O,) =0 (making 01 := L in ##2 and taking counter-reciprocal)

##5. If v($O01) =0 then u(9) =0 (making 6, := L in ##3, because then v(<$61) <v(LL) and v(<oy)
<a).

We perform now a dual construction of the one we made in the proof of Claim 1. Let C = {v(<$0) <
o :0 € F} and define for each ce C

uc=max{u(@):0 eF, v(<CO)=c}.

Note that up=0 by ##5 above, and uy =1 because u(¢)=1. Define an ascending sequence
O=cp<cy<....in C as follows:

co=v(CL)=0

cy=min{ce C:c>cq and u¢ > U}
cp=min{ceC:c>cy and u¢ > ue, }
etc.

Choose ¢; such that u;, =u(p;), ¢;=v(<Cg;). Clearly, 0=us, <uc, <.... By finiteness of F the
sequence of the ¢; ends necessarily with cy =a, because ¢; =v(Cg;) <« implies ue, =u(@;) <1 =uq
by ##1 above and thus the existence of ¢; 1 <c«. This means also that u., =1.
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Fix & > 0 such that « — & > cy_1, and further define (taking max @ =0)

gn—1 =max{o —e, max{v(1J0):v(J0) < cn}}
gi=max{c;, max{v(110) :v(1J0) <cjt1}}, fori<N —1.

Then we have:

O=CO§6]0<01 <g1<...N—1<a—e=<gN_1<CN=
0=u60<ucl< ..... <MCN=1~

Choose g:[0,1]— [0, 1] to be any strictly increasing function such that

8(0)=0

g[(uci9uci+] ]] =(qisci+1] fori<N-—1
8luey_y, D1=(gn-1,2)

g(H=1

Then g is a Heyting homomorphism and the valuation w=_gov satisfies w(@)=w(XUTGoc)=1;
thus w € W. It remains to show that S¥vw >« — ¢. Indeed, we have:

(1) If v($O) > « then trivially (w(6) = v(<$0)) > «. In particular, (w(@) = v(Cp)) =1 =v(Op)) =
a.
(ii) If v(<$0) < a then w(0) <v(<$0). To see this consider cases. First: u(9) € (u;, uc,, ) for some
i (recall u(6) <1 by ##1), then w(0) €(g;,ci+1]. As u(0)>uc, and c¢;11 =v(<C@;41) is the smallest
v(Oyr) with u(yr) > ue, then v(C0) > ¢ >w(8). Second: u(9)=0, then w(6)=0 and v(08) =0 by
##4.
(iii) If v(OJO) > a then (v(JO) = w(B)) > o — &, because v(L10) > cy—1 =v(O@n—1) which implies
u(0) > u(pn—_1)=ucy_, by ##2. Therefore, w(6) > gn_1 > o — & by definition.
(iv) v(J0) <« then v([10) <w(6). To see this notice that ¢; <v(1J0) <g; <c;j4+ for some i and
consider cases. First: v((10) =c; =v(<g;) then, by ##3, ue, = u(p;) <u(0). Therefore c; <w(0). That
is, v((J0) <w(B). Second: c; <v([JP) then u., <u(f), by ##2, and by definition g; <w(0), which

shows again v(LJO) <w(0).
From (i,ii) we have: infgcp{w(0) = v(<$0)} =«, and from (iii,iv): inf g p {v(LJO) = w(0)} > —e.
Hence, SFvw>a —s. [ |

Lemma 3.2 (Weak completeness)
For any finite theory 7 and formula ¢ in Lo, T =Gk ¢ implies THg .

PrROOF. Assume T is finite and T't/g-, ¢. Then T, ThGro Vg ¢ by Lemma 2] and thus there is, by
Proposition 2.1l a Godel valuation v: VarUX — [0, 1] such that v(¢) <v(T)=v(ThGno)=1. Let F
be a finite fragment containing T'U{¢}, then v is a world of the canonical model My r and by Lemma
B eF v, T)=w(T)=1 and ¢ (v,9p)=v(p) < 1. Thus T gk ¢. [ |

To prove strong completeness we utilize compactness of first order classical logic and the following
result of Horn:

LEMMA 3.3 ([@], Lemma 3.7)
Any countable linear order (P, <) may be embedded in (QN[0, 1], <) preserving all joins and meets
existing in P.

THEOREM 3.1 (Strong completeness)
For any countable theory T and formula ¢ in Lo, THgo, ¢ if and only if T l=gk ¢.
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PROOF. One direction of the equivalence follows from Theorem 2.1l (soundness). For the other
direction, assume 7'¥ g, ¢ and consider the first order theory 7* with two unary relation symbols
W, P, a binary relation symbol <, three constant symbols 0, 1, ¢, two binary function symbols o, §
and a unary function symbol fy for each 6 € L (V), where V is the set of propositional variables
occurring in formulas of 7', and having for axioms:

Vx—(W(x)AP(x))

Vx(W(x)Vv—=W(x))

‘(P, <) is a strict linear order with minimum 0 and maximum 1’
VXV (W (@) AW (y) = P(S(x,y)))

VxVy(P(x) AP(y) > (x <yAxoy=1)V(x>yAxoy=y))
Vx(W(x) — f1(x)=0)

for each 0,y € L¢ the sentences:

V(W (x) — P(fp(x)))

Vx(W(x) = fg ny (x) =min{fy (x), fy (X)})

V(W (x) = fo—y () = (fp(X) of y (x))

Vx(W(x) = fog(x) =inf y(S(x, y) ofg (¥))

V(W (x) = fop (x) =sup, (min{S(x, y),fo (y)})

for each § € T the sentence: fs(c)=1

finally, W(c) A (fp(c) < 1).

For each finite part ¢ of 7™ let F be a finite fragment of L containing {6 :f occurs in #}. Since
FNT¥go, ¢ by hypothesis, then, by weak completeness, there is a GK-model My g =(W,SF )
and a € W such that e’ (a,0)=1foreachf e FNT and el (a, ) < 1. Therefore, the first order structure
(Wu[0,11,W,[0,1],<,0,1,a,=>,5 .fo)pery,, » With fo: W —[0,1] defined as fo(x)=e'(x,0), is
clearly a model of ¢. By compactness of first order logic and the downward Lowenheim theorem,
T* has a countable model M* =(B,W,P, <,0,1,a,0,S,fp)pery,, - Using Horn’s lemma, (P, <) may
be embedded in (QN[O0, 1], <) preserving 0, 1, and all suprema and infima existing in P; therefore,
we may assume without loss of generality that the ranges of the functions S and fy are contained in
[0, 1]. Then, it is straightforward to verify that M =(W, S, e), where e(w,0) =fy(w) for all we W and
0 € LOo(V), is a GK-model with a distinguished world a such that M |=, T, and M [~, ¢. Hence,
T =Gk ¢- u

For normal theories we obtain a finer result:

THEOREM 3.2
If T is a countable normal theory there is GK-model Mt such that for any ¢ : Ttg ¢ if and only
if M7 =

PrROOF. Assume T¥g, ¢. Then, by Lemma[3] for each finite fragment F of £ (V) containing
¢ the canonical model M7 r is such that M7 p =TNF and Mr r ~=¢. Add to the theory 7™ in
the proof of Theorem B.J] the sentence Vx(W(x)— f5(x)=1) for each § € T. Then by the previous
observation each finite part of 7* has a model. Arguing as in the quoted proof, we obtain a GK-model
My=(Wy,Sp,eyp) such that e, (w,T)=1 for all w € W, and e(wy, @) < 1. Define now My =(W,S,e)
where W=Uy{W,:T¥Fg-, ¢}, Sww' =Soww’ if w,w' e W, and 0 otherwise, and e(w,p) =ey(w,p)
for we W,,. It is easily verified by induction on the complexity of ¢ that e(w,0)=e,(w,0) for any
w € Wy. Thus, M7 =T and hence T g, ¢ implies M7 = ¢ by soundness; reciprocally, if Tt/ g, ¢
then e(wy, ) =ey(Wy,¢) <1 by construction, and thus M7 = ¢. |
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We cannot expect similar results for uncountable theories by the observation after Proposition 2.1}
In fact,

PROPOSITION 3.1
There is no single linearly ordered Heyting algebra H giving strong completeness with respect to
HK-models for theories of arbitrary power, even in Godel-Dummett logic.

PROOF. Assume otherwise, then H would be infinite (by the known Godel argument). Let « be a
cardinal greater than |H| and consider the theory T ={(pg — pa)— q:a < B <«k}. Then T =gk q,
because v(T) =1 with v(g) < 1 would imply v(pg — py) < 1, and thus v(py ) <v(pg) foralla < B <k,
yielding a subset of H of power «, which is impossible by hypothesis. On the other hand, T¥g_,, g.
Otherwise, we would have Al-g_, ¢ and thus A =gk g, for some finite set A ={(po,,, — Po;) —
q:1<i<n}, which is impossible because the valuation v(py,)=h;, v(q)=h, where h) <hy <...<
hput1 <h<1 makes v((pg;, | —> po;)—> q)=1for 1 <i<n. |

4 Modal axioms, optimal models

The notions and results in this section make sense and hold for HK-models where H is any complete
Heyting algebra. Thus we state and prove them in this general framework.
Call a HK -frame M = (W,S) reflexive if Sxx=1 for all x e W, transitive if Sxy-Syz < Sxz for all
x,y,z€ W, symmetric if Sxy=_Syx for all x,y € W, and euclidean if Sxy-Sxz <Syz for all x,y,ze W.
Let Ref, Trans, Symm and Euclid denote, respectively, the classes of HK- models over frames
satisfying, respectively, each one of the above properties. These are the fuzzy versions of the
corresponding properties of classical frames, classically characterized by the following pairs of
modal schemes:
T Op— ¢ To o— o reflexivity
40 Dp—0O0p 4o OOCp— O transitivity
B ¢—>OCe By, CUp— ¢ symmetry
E; Cp—-0Cp E, OUp— e euclidean property

A.1)

LEmMmA 4.1
(1) T and T ¢ are valid in Ref . (ii) 40 and 4¢ are valid in Trans. (iii) B and B; are valid in Symm.
(iv) E| and E; are valid in Euclid.

PRrROOF. (i) In reflexive models, e(x, O¢) < (Sxx=>e(x, ) =e(x,p) =Sxx-e(x,¢) <e(x,Op) for any
x. Thus e(x,Op — @) =1=e(x,p —> <@).

(ii) In transitive models, e(x, Op)-Sxy-Syz <[(Sxz=>e(z,¢))-Sxz] <e(z,¢) for all x,y,z. Hence,
e(x,0¢)-Sxy<(Syz=e(z,9)) and thus e(x,0¢)-Sxy<e(y,0O¢). Therefore, e(x,O¢p)<(Sxy=
e(y,0¢)) for all y and thus e(x,0¢)<e(x,00¢) which yields 40. Also Sxy-Syz-e(z,¢) <
Sxz-e(z,¢) <e(x, o). Hence, Syz-e(z, ) <(Sxy = e(x, O¢)) and thus e(x, o) < (Sxy = e(x, Op)).
Therefore, Sxy-e(x, O@) <e(x,Og)) for all y and thus e(x, O<Cp) <e(x, Cg) which gives 4¢ .

(iii) In symmetric models, Sxy-e(x, ) =Syx-e(x, ) <e(y,O¢) for all x,y. Then e(x, ) <(Sxy =
e(y, Op)) and thus e(x, @) <e(x,[dO¢)) which is B1. Moreover, e(y, ) < (Syx = e(x, ¢)); then Sxy-
e(y,Up)=Syx-e(y,Ue) <e(x,p) and thus B, follows.

(iv) In euclidean models, Sxy-e(y, ¢)-Sxz=Szy-e(y, ¢) <e(z, <) forall x,y,z. Then Sxy-e(y, ¢) <
(Sxz=e(z,O@)) and E; follows. Similarly, Sxy-e(y,0p)-Sxz <Syz-(Syz=e(z,9)) <e(z,¢)), and
thus Sxy-e(y,dp) <(Sxz=>e(z,¢)), from which E, follows. |
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To extend the completeness theorem to the [0,1]-valued analogues of the classical bi-modal systems
T, S4, S5, we introduce a particular kind of GK-model, their advantage being that the many-valued
counterpart of classical structural properties of frames may be characterized in them by the validity
of the corresponding classical schemes.

DEFINITION 4.1

Given a HK-model M =(W,S,e), define a new accessibility relation S*xy= Soxy- Soxy, where
Soxy=inf yerq, {e(x,Dp) = e(y, )} and Soxy=infyerq, {e(v,9)= e(x,Op)}. Call M optimal it
St=s.

The following lemma shows that any model is equivalent to an optimal one.

LEMMA 4.2
(W,ST,e)is optimal. If e is the extension of e in this model then e (x, p) = e(x, @) for any ¢ € Le.

PROOF. The first claim follows from the second (which implies ST =57), and the second is proven
by induction on the complexity of formulas. The only non-trivial step is that of the modal connectives.
Notice first that Sxy<Stxy, because e(x,0¢)<(Sxy=>e(y,)) and Sxy-e(y,p)<e(x,¢) for
any ¢; thus Sxy <(e(x,0¢)=e(y,9)), (e(y,9)=>e(x,Op)). Now, assume et (y,p)=e(y,¢) for
all y, then by the previous observation and the induction hypothesis: e™(x,Jp)=inf »{S Txy=
et(y,0)) < inf {Sxy = e(y, )} =e(x,Up). But Stxy <(e(x,0p)=>e(y,p)) by definition of ST and
thus e(x,dp) < (STxy=e(y,0)=(STxy= eT(y,9)) which yields e(x, J¢) <e™(x,p). Similarly,
by the induction hypothesis and the first observation, e (x, <>g0):supy{S+xy~e(y,(p)} > sup, {Sxy-
e(y, @)} =e(x,Op), and by definition STxy<(e(y,p)=>e(x,O@)). Thus STxy-et(y,0)=STxy-
e(y,p) <e(x, @) which yields et (x,Op) <e(x, Op). |

PROPOSITION 4.1

An optimal HK -model is: (i) reflexive if and only if it validates the schemes T+ T, (ii) transitive
if and only if it validates 4 +4¢, (iii) symmetric if and only if it validates B;+B», (iv) euclidean if
and only if it validates E1+E>.

ProoF. (i) If T and T¢ hold, Sxx =inf ,{e(x,Ce — @)} -inf y{e(x,p — @)} =1, by optimality.
(i)  Sgxy-Soyz < (e(x,U0gp) = e(y,Up)) - (e(y,Up) = e(z,¢)) < (e(x, HUp) = e(z, ¢)) < (e(x,Uyp)
= e(z,¢)), the last inequality holding by 4. Similarly, Soxy-Soyz <(e(y, Op)=>e(x, O p))-
(e(z,0) = e(y,Op)) <(e(z,0)=e(x, O p)) <(e(z,9)= e(x,$p)), the last inequality holding by
4. Hence, Sxy-Syz <(e(x,Up) = e(z,9))- (e(z,9) = e(x, O¢) by optimality. Taking meet over ¢ in
the right we get transitivity.

(iii) Since Soxy < (e(x,dO@) = e(y, Cp)) <(e(x,p) = e(y, O¢)) by By, then taking meet over ¢,
we obtain Shxy < Soyx. Similarly, Soyx < (e(x,Op) = e(y, CUp)) <(e(x,Hp)= e(y,¢)) by B2, and
then S¢yx <Soxy. From this, Soxy =Soyx, and thus Sxy=_Syx.

(iv) Assuming E|, Soxz <(e(z,9)=e(z,<Op)) <(e(z,9)= e(z,O@)) for any formula ¢, and
combining this with Sgxy <(e(x,JC @)= e(y, C@)), we obtain Soxy-Soxz <(e(z,9) = e(z, Cp)).
Similarly, assuming Ej, Soxy <(e(y,Up)= e(x, CUp)) <(e(y,Tdp)=e(x,yp)), and combining
this with Sgxz <(e(x,0p)=e(z,¢9)), we obtain Socxy-Sgxz<(e(y,Up)=>e(z,¢)). Multiplying
the obtained inequalities we get: Sxy-Sxz <(e(y,Up) = e(z,¢))-(e(z,9) = e(z, ), which yields
Sxy-Sxz < Syz by optimality. |

REMARK. Another relevant property of classical Kripke frames is seriality: Vx3ySxy=1, charac-
terized (classically) by any of the axioms &T or —[J_L. We have not been able to characterize this
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property in GK-frames. However, its fuzzy version: Vxsup, .y Sxy =1, is readily seen to be equivalent
in arbitrary HK-frames to the validity of ¢ T, while the axiom —O_L characterizes only the weaker
condition Vx3ySxy > 0.

5 Godel analogues of classical bi-modal systems

Lemma[£2] in conjunction with Proposition L]l and Theorem B.I] implies strong completeness of
any combination of axiom pairs in Table 4.1, with respect to GK-models over frames satisfying the
associated structural properties. In particular, we obtain completeness for the Godel analogues of the
classical modal systems 7', S4 and S5:

0Toe =0nc+To+To
GS4006 :=0no+To+To +4g+4o
GS50¢ :=0nc+TOo+To+4q+40+B1+B;

These systems may be seen to be equivalent, respectively, to the purely intutionistic modal logics
IT, 1S4, ISS=MIPC ([IEI], [@], [E]) plus the prelinearity scheme. We let the reader consider other
relevant combinations. Recall that strong completeness refers here to entailment from countable
theories.

THEOREM 5.1

GTno is strongly complete for =Gk nRef -

GS84nc is strongly complete for F=GrnRefNTrans -
G850 is strongly complete for =Gk nRrefNTransnSymm-

PROOF. If T [=GrnRer ¢ then T =Grnoptimaingef ¥- Thus T+{To,To} FEGrnoptimal ¢ by Propo-
sition LT} and 7 +{T.To} =gk ¢ by Lemmad.2] Therefore, T +{Tm,To } gy, ¢ by Bl which

implies T kg7, @. The proofs of the other two cases are similar. |

We focus on the system GS5¢ that may be considerably simplified because the symmetry axioms
B; and B; imply the inter-deducibility of each pair {FS1,FS2}, {To,T¢} and {44,4¢}, and {B,,P}
deduces F¢,. Moreover, in the presence of {T,T¢ }, the euclidean axioms {E,E;} are equivalent to
{40,4¢14+{B1,B>}; therefore, we are left with the modal axioms:

Ul — ¥)— (Lo — Uy)
ClpVi)— (CpvOoy)
Ol — )= (Co— OYr)
Up—o

p—><p

O —O0Ce

OO — O

GS50¢ presents some features that distinguish it from the weaker systems G, GTe and GS40e.
The uni-modal fragments of the latter logics have simple axiomatizations while axiomatizations
for the uni-modal fragments of GS5¢ are unknown. The [J-fragments of the weaker systems are
characterized by their accessibility-crisp models, as shown in [[d]], but this is not the case for the
O-fragments of GS5¢, as the following example illustrates.

ExaMPLE. The formula CI(Ce v ) — (Oe V) is not a theorem of GS5 but it is valid in any
accessibility-crisp model of GS54. The first claim is granted by the following two worlds model:
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in which the reader may verify that e(u, J(Cp Vv ¢g))=1 and e(u,UpVvUg)= % To verify the second
claim notice that if (W, S, e) € Ref NTransNSymm has crisp accessibility S, this defines a classical
equivalence relation ~ in W and thus e(x,[10) =inf , {Sxy = e(y, 0)} =inf y~{e(y,6)} for any formula
6. Therefore, e(x, (e V)= inf y~,{inf ;~ye(z,0) Y e(y, ¥)}. But ay= e(y,Up)=inf,~ye(z,¢)
is identical to o for all y~x because {z:z~y}={z:z~x}; hence, e(x,0(p V)= infy{ax Y
e(y,¥)}=a, Yinf y~{e(y, )} = e(x,Ue vy) by distributive properties of [0,1].

In the classical setting, S5 is characterized by Kripke models with universal accessibility relation;
that is, Sxy =1 for all x, y. This cannot be the case for GS5¢ or its [J -fragment due to the previous
example, nor is it the case for the & -fragment because =—< ¢ — O——¢ holds in all accessibility-
crisp models but fails at the world v in the model displayed in the previous example (¢ := g). However,

THEOREM 5.2
G858 :=G8500 +{00¢ v ) — (Lp vOY)} is strongly complete for =Gk nuniversar hence, for
accessibility crisp models of GS5¢ .

PrOOF. Soundness follows from the above example. Weak completeness with respect to GK-models
over universal frames is shown by Héjek in [[19] for the deductively equivalent system S5(G).
This may be extended to strong completeness with respect to countable theories as in the proof of
Theorem 311 [ |

6 The algebraic connection

As an algebrizable deductive logic, G has a unique algebraic semantics given by the variety of
bi-modal Godel algebras, those of the form A= (G, I, K) where G is a Godel algebra and I and K are
unary operations in G satisfying the identities:

I(a-b)y=Ia-Ib K(aYb)=KaY Kb
I1=1 K0=0
Ka—Ib<I(a—b) K(a— b)<la— Kb

This means that G, is complete with respect to valuations v: Var — A in these algebras, when they
are extended to L interpreting [ and < by I and K, respectively.

Similarly, GToeo, GS40¢ and GS5¢ have for algebraic semantic the subvarieties of bi-modal
Godel algebras determined by the pairs of identities in the following table corresponding to their
characteristic axioms:

la<a a<Ka reflexivity

la<lla Ka<KKa transitivity
a<lKa Kla<a symmetry
Ka<IKa Kla<la -euclidean property

6.1)

Notice that the algebraic models of GS4¢ are just the bi-modal version of the topological pseudo-
Boolean algebras of Ono [Iﬂ] with a Godel algebra as underlying Heyting algebra, and the algebraic
models of GS5¢ are the monadic Heyting algebras of Monteiro and Varsavsky [E] with a Godel
algebra as underlying Heyting algebra.
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ExaMPLE. As we have noticed, there is no finite counter-model for the formula O——p— ——=0p
in Godel-Kripke semantics. However, the algebra A= ({0,a, 1},1,K), where {0 <a < 1} is the three
elements Godel algebra and I1=1, la=10=0, K1=Ka=1, K0=0, is a bi-modal Godel algebra
(actually a monadic Heyting algebra) providing a finite counterexample to the validity of this formula
by means of the valuation v(p) =a, as the reader may verify.

We may associate to each Godel-Kripke frame F=(W,S) a bi-modal Godel algebra [0, 117 =
([0, l]W,I}-,K}-) where [0, l]W is the product Godel algebra, and for each map f €0, I]W :

7 (H(w) = inf (Sww' =f('))
wew

KT (f)w) = sup (Sww’-f(w'))
weWw

THEOREM 6.1
(0,117 is a bi-modal Gédel algebra, and there is a one to one correspondence between Godel-Kripke
models over F, and valuations v: Var — [0, 1]7: given by the adjunction:

Var x W5 [0,1]

Var 510,11, ve(p)=e(—,p)

so that v.(p) =e(_, ) for any formula ¢. Moreover, the transformation F —— [0, 1]}— sends reflexive,
transitive, symmetric and euclidean Godel-Kripke frames, respectively, into bi-modal algebras
satisfying the corresponding identities.

PrOOF. The verification of the identities that 7 , K F must satisfy in each case is routine and the
induction on formulas showing v.(¢)(w)=e(w, ¢) is straightforward. |

Reciprocally, utilizing our strong completeness theorem for normal theories (Theorem B.2), we
may associate to each countable bi-modal Gddel algebra A a GK-frame F such that A may be
embedded in the associated algebra [0,1]7, and to each algebraic valuation v in A corresponds a
GK-model over F validating the same formulas as v. However, the construction is not canonical.

THEOREM 6.2

For any countable bi-modal Godel algebra A there is Godel frame F =(W,S) such that:

(i) Any pair of identities in (GI) which is valid in A is valid in [0, 1]7.

(i1) A is embeddable in the algebra [0, 117

(iii) For any valuation v: Var — A there exists e, : W x Var — [0, 1] such that (W,S,e,) =g if and
only if v(¢)=1, for any sentence .

PrOOF. Fix a valuation 7 into A with onto extension 1: Lo — A and let T={¢:n(¢)=1}. Then
T is a normal theory deductively closed and for the model My =(W, S, e) of Theorem [3.2] we have
Mr |=¢ if and only if n(¢)=1. Without loss of generality we may assume Mt is optimal (Lemma
[A2). Set F:=(W,S), then (i) holds by Proposition[£.J]and the last claim of Theorem[6.1] To see (ii)
notice that, by the same theorem, e induces a bi-modal Godel valuation v, : Var — [0, l](W’S), ve(p)=
e(—,p) such that v.(¢)=e(—,p)=1€][0, I]W if and only if n(¢)=1. This means that the extension
Ve : Lo — [0,11W-5) factors injectively through 7; that is, v, = 8 o7 for an injective homomorphism
of bi-modal Gédel algebras §:A — [0, 1](W’S). Finally, to show (iii), pick v:Var — A, then dov is a
valuation into [0, 1](W’S) which induces, by Theorem[6.I] a GK-valuation e, : W x Var — [0, 1] such
that e, (w, ) =38(v(p))(w). As § is one to one we have that v(¢) =1 if and only if §(v(¢))=1€[0, 1"
that is, e,(w,9)=1 for all w, which means (W,S,e,) =¢. |
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Applying parts (i) and (ii) of the previous theorem to the free algebras of countable rank we obtain:

COROLLARY 6.1 s
The variety of bi-modal Godel algebras is generated by an algebra of the form [0, 1]( ¥ A similar
result holds for the subvarieties determined by any combination of identity pairs in Table (G.I).

As we defined [0,1]W-5) we may define, similarly, bi-modal algebras C-S) where C is any
complete chain, and obtain from Theorem [6.2] utilizing ultraproducts and the Dedekind-MacNeille
completion:

THEOREM 6.3

For any bi-modal Godel algebra A there is a complete chain C and a CK-frame (W, S) such that A is
embeddable in CW-5), Moreover, the latter algebra satisfies any identity pair in Table (&I} satisfied
by A.

7 Afterword

Our objective of axiomatizing the main bi-modal fuzzy logics under the Godel-Kripke interpretation
is fully achieved, and it is not difficult to extend this to languages enriched with sets of truth-
constants along the lines of similar results for the uni-modal fragments in [Ia]. But some particular
axiomatizability problems are left open in this article. We have emphasized already the lack of an
axiomatization for the uni-modal fragments of GS5¢. Another problem is the axiomatizability
of validity in the accessibility-crisp models of each logic considered, having effective solutions
for the fragments G, GT and GS4 (the logic themselves [|a]), the fragment Go (add the rule
(= Y)VOILCp— OPr) v OO, Metcalfe and Olivetti [E]), and the logic GS50¢ (the extension
G857, introduced in Theorem [5.2).

The question of the decidability and complexity of G and its extensions is also left unanswered
since these logics do not have the finite model property under GK -semantics. However, the uni-modal
fragments G, Go,GTo and GS4¢ are known to be decidable, the first two by results of Metcalfe
and Olivetti [24] who show they are PSPACE-complete, and the last three because they do have the
finite model property (see [Ia]). As in [Iﬁ], we may utilize a double negation interpretation of the
classical modal logics into their Godel counterparts to show that GS5r¢ is co-NP-hard and the other
logics considered here are PSPACE-hard.

It has been noticed throughout the article that most results reported, excepting deductive
completeness, hold for HK-models where H is an arbitrary complete Heyting algebra. It is reasonable
to expect that validity in HK-models is axiomatized by IK + Ly, where IK is Heyting calculus plus
the set of modal axioms of G, and Ly denotes an axiomatization of H-valued propositional logic.
However, our completeness proof with respect to GK-models does not shed light on this hypothesis
because it depends heavily on the linear and homogeneous character of [0,1].
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