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BACK-AND-FORTH SYSTEMS FOR ARBITRARY QUANTIFIERS

Xavien Caiceds

ABSTRACT. wa(K) is the logic obtained by adding a
Lindstrém's guantifier Kfl ik (¢1(5'c1)... ¢ {;ck))
to the logical operations of L . The corresponding
finitary legic is wa (K}, and wa (K’{._) ie1 is

obtained by adjoining a family of quantifiers.

In this paper, we give back - and - forth
systems characterizing elementary equivalence in those
legics and their fragments of bounded quantifier rank.
This generalizes work of Fraissé and Ehrenfeucht for
wa, Karp for me, Brown, Lipner, and Vinner for

cardinal quantifiers, Badger for Magidor-Malitz quan-
tifiers, and others. Our systems apply to higher or-
der quantifiers also.

INTRODUCTION,

Ehrenfeucht 1961 and Fra7ssé 1955 gave back-and-forth or game theoretical char-

wes? later gener-

alized by Karp 1965 to infinitary logic, L. - These characterizations were used

to obtain results about definability of ordinals and preservation of elementary e-
quivalence by operations on structurgs. LindstrOm 1969 used Fraissé-Ehrenfeucht
games to characterize wa. Back-ahd-forth systems for logics withcardinal quan-

tifiers are due to Vinner 1972 and others. Badger 1977 gives systems for logics
with Magidor-Malitz quantifiers {Magidor and Malitz 1977), and shows the failure
of interpolation and preservation of elementary equivalence by products in these
Jogics. Krawczyk and Xrynicki 1976 give systems for certainmonotonic quantifiers,
without any application. Makowsky 1877a has similar systems and he studies mono-
tonic quantifiers in detail. Back-and-forth systems for Stationary Logic, L{aa)
(Barwise, Kaufmann and Makkai 1977), were given independently by Kaufmann 1978,
Makowsky 1977 b and the author {Caicedo 1977 b).

In our doctoral dissertation, we presented back-and-forth systems character-
jzing elementary equivalence in logics obtained by adding to first order logic

quantifiers of the form Qx ¢ (%), this means binding one or several variables in
a single formula, and gave various applications, particularly to wa(Ql) and
t{ea). In this paper, we introduce back-and-forth systems appropriate for quan-
tifiers binding several formulas: .
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Although the metheds may be applied successfully to second and higher order quan-
tifiers, as they were applied to t{aa) in Caicedo 1978, the corresponding results
will be published elsewhere.

We assume as known the notions of an abstract logic, as well as the extension
relation be*ween logics, and the notion of a generalized quantifier {Lindstrim
1966, Barwise 1974, Makowski, Shelah, and Stavi 1976). oL, & ,... denote classi-
cal structures, and A, B, ... denote their universes.

In Ssction 1, we introduce quantifier symbols and their interpretations. In-
stead of considering quantifiers in the sense of Lindstrém 1966 and Mostowski 1957
only, we deal with the more general case of so calied "weak models" where the quan-
tifier interpretation forms part of the structure. Lindstrom-Mostowski quantifiers
are recovered as families of weak models where the interpretations of the quan-
tifiers are determined, up to isomorphism, by the domain of the siructure.

In Sections 2 and 3, we define the back-and-forth systems and prove the char-
acterization of elementary equivalence.

In Section 4, we consider monadic quant‘iﬁerS,those where the quantifier binds
a single variable in each formula, and extend'a result of Friedman 1973 about the
failure of Beth's definability theorem in cardinality logics to logics with " these
quantifiers. Also we show that any extension of me'(Q-O) by monadic quantifiers

satisfying interpolation musi satisfy the downward Lowenheim-Skolem theorem.
In Sections 5 and 6, we give a simpler version of back-and-forth for cofilier

quantifiers, which becomes PC definable. The main applications deal with {(infinit-
ary) extensions by monadic quantifiers of wa(Ql), lagic with the quantifier

“there zre uncountably many". These include an analogue of Lindstrém's theoren
for wa(gl), a relative interpolation theorem in wa(Ql) with respect to ‘such

extensions, and the existence of models satisfying few types in those extensions.
Makowsky and Stavi discovered independently the relative interpolation theorem in
Lo:w(Ql) and L{aa), with respect to their infinitary extensions. o

‘Finally, in Se¢tion 7 we show that elementary equivajence is preserved hy car-
tesian products in a natural extensiorn of legic with Magidor-Malitz quantifiers.

, -
§1 GENERALIZED QUI{NTIFI ERS.

A quantifien symbol is a symbol O together with a sequence of positive inte-
gers {fps...s ”k) called the type of the guantifier symbol. Given asetof re-

lation, function and constant symbols, the language wa(Qj) jéJ is obtained by

adding to the usual formation rules of L .. for atomic formulas, ~1, A , and 3

the new rule: ‘
If Qj is & quantifier symbol of type (nl, cean ”Ia) s ¢1""’¢k are
formalas, and ;‘1’ cees ;!z are lists of hq, ..., n, variables, re-
spectively, then iji""’ xk(¢1""’¢k) is a formula.

It is understocd that only. those free variables of 4:4,: which appear in the Tist
X, ave bound by the quantifier.

1f ¢ 1is a structure in the ordinary sense and. 0 is & quantifier symbol of
type (nqs.ous ”h) , then an interpretation for @ 4in g is a family
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n n .

1 [
gC P xoo.x P4 %Y. an me(Qj)jeJ stnuctune has the form (o3 qj}jeJ
where ¢, s an interpretation of Q. in ¢f. The semantics of wa(QJ )_{EJ is
defined in the usual way, except for the additional clause:

(m;qj)jej E ijl,..., in(d:l,..., $p ) if and only if

(1rx1 By seees T Xy ¢_k)e e where
rig=ial(or; qdicy B oo(x/a)l
The language me{‘Q')jeJ and its semantics are defined similarly, allowing

infinitary conjunctions. The quantifier rank of a formula of this language is the
ordinal defined inductively by:

gr {(¢) =0, If & 1is atomic

qr (3¢} =qr (¢)

qr (A6) = sup{gr{s)|oed}

gr (3x¢) =qgr {¢}+1

qr (Q.j-il,...',ikwl,.--, $4)) = max qr (6,)+ max s

where (nl, . ’“!z) is the type of Q_

Let « be an ordinal, or the symbol = cons1dered greater than all the ordinals,

then me(Qj)jEJ consists of the formulas of rank Tess than o . Two quantifier
44

structures are e -elementarily equivalent, (&; ¢ ) = (%; as ) , if they

satisfy the same sentences of this language. The prom" of the ﬂﬂlowmg Temmas 15
similar to that of Lemma 3.2.1 in Caicedo 1978.

LEMMA 1.1  TIf Zhe numbern of refation; function, constant, and quantifier
symbols is §inite, Then L:Q(Q'j)jej is equivalent Lo wa(Q_ ) jer Moreover,

forn each finife n and k Lhere 48 a, finite number of non-equx.uwﬁemt formubas of
quantifier rank equdl 2o n with at what b vaniables.

LEMMA 1.2 Given {¢i; qj-)jej, thene i6 at most a sei of formulas of
Loy (8) e 7 which are non-equivalent in this stuetune.

A Lindstndm-tostowshi quantifien of type (Rysegs ) ds 2 function © which

assigns to each set A a quantifier interpretation (A)C P(A 1) X% 5’ ",
with the property that if §: A->B ds a bijection, then for atl (s1 seees Sk)

(Sl,..., Sk) c (A) iff (ﬁ'(S Joueus §' (Sk)) € Q(B) It is readily seen that

this corresponds to the defim‘ticm of a quantifier as a class K of structures of
the same type, closed under isomorphism ?Lindstriim 1965),‘ by defining

aa) = {(Syseres 8) | (A, Syaenny 8) €K},

A Lindstrom-Mostowski family of quantifiers {Qj | f&T} defines an extension

I+ of me in the sense of Lindstrom 1969 and Barwise 1974 by taking the sen-
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tences of wa(Qj)jEJ as the 4yntax, and defining for an ordinary structure :

aL Lt: ¢ Iff (ch;Qj(:f«)}j.E_T Ed.

When the quantifier a interpreting the symbol Q. is understood, we will abuse
the 1 iti L (9) for L* I
e languageg writing . Qj jes or .

The existential quantifier is the Lindstrém-Mostowski quantifier of type (1)

defined by the function- ﬁ(A) ={§cA ]S+ pl. The following quantifiers are
well know.

Candinal quantifiens, type (1), for each ordimal «: 2,(A)= {scAlls] > w, }.

Magidon-Malitz quantifiens, for each ordimal e and finite n, the quantifier of
type (nd: Q% (A) = {SCA" [3TCA such that 1"cs and |I| 2w }.

Chang quantifien, type (13 : Q(A) = {SCA|]S] = |A]3.
{(s,T)| sc4 Tc4A, |s|={Tl}.

f

Hantig quantifien, type (1,1): H(A)
Henkin quantificr, type ¢4 : Hen{A) = {8 _C_A4 | 34, g : A > A such that {xgcs}

Note that the logics obtained from these quantifiers do net include those where the
meaning of gquantifier is not determined by the domain of the structure, 1ike Sgro's
topological togic (Sgre 1977). However, if we consider only logics for classical
structures with a finite number of relations, functions, and constants, then any
logic is a sublogic of some wa{Qj)jEJ' Even more, if the logic L {s closed

under substitution of relation symbols for formulas then L s equivalent to some
wa(gj‘ }J,'EJ .

—_

§ 2  BACK-AND-FORTH SYSTEMS,

Thraugh this section (0L, q) and (%, 1) will be quantifier structure where ¢
and 4 are interpretations for a quantifier symbol of type (r}l,..., My Y. Aand
B are assumed to be disjoint. Sequences in A" UB" (n€w) will be denoted

o, 6", &, a', 7, 7', b,y B'; the value of n will be clear from the context. Con-
catenation is dencted by juxtaposition. :

DEFINITION 2.1.- A back-and-forth between (A : q) and (%; #) consists of

a Tinearly ordered set P = (P, <}, called the set of parameiens, and a family :

tg? pEP} of equivalence relatiens in A" U 8" for each nEw, subject to
n

properties (i) to (iv) below.
R
Before stating the properties, we introduce some convenient notation. o ~¢'

will denote (o, ¢') € Eﬁ; the value of n will be ¢lear from the context. For
each kR, n and ¢ € Ak , we can restrict the equivalence relation Ep,;,n to ele-
ments of A" in the following way: a4 ~ &' iff o & Rear(@a,a € A%). For

=0 and o =@ we get Eﬁ restricted to A", Obviously, 3: is an eguiva-

lence relation.
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“ - . P "
1219 =txeaox~ o}
is the corresponding equivalence class of 4 in AR IF X EA" we write, abus-
ing the language, [X]E:u'{[&]ﬁ laeX}. ’
Analogous notation and observations are valid with respect to sequences in B.

PROPERTIES.
P
£y g~ p .
(£€) (Extension property). Let 4 = max {”1"“’ ”h} and p <py g ... <
Py = p', then fur' all sequences ¢ in A and + in B such that o T there

exist 'Funct-mns 5 A g - B ’é, 1 SL<h, such that:

L P o 5 ng '
(A) od~r g, (d) forall dea “ol<i<h.

".‘
8) If X,CA “,1<i<k, then (1x11§,...,[xk1§)5q

implies (14% (X 017,183, {X )10 )e v,
(£i€) As (L&), interchanging the roles of A and B,

(iv) (Isomorphism property). If (al,..., an) ~ (bl,..., bn) then the assign-
ment aimb’i is a partial isomorphism from & to & .

DEFINITION 2.2.. {p , {Eﬁ[ pEP, newll isa back-and-fonth from
fer; qj)_{EJ A0 (.'Y};)f,.)i.ej if it {is one from (Ol;q-) to (5""& ) for
each j&€J. The existence of such a relation is denoted by (cx; ‘tj)jej"' {(Ban, )JEJ

REMARK. We assume that any back-and-forth satisfies the extension property

for the existential quantifier. It 15 enough to postulate 1n (££) , for each
t

- P
g ~ 7 and p<p' the existence of a function §:A~B such that ea ~v 7 §(a).
Property (B) halds automatically.

DEFINITION 2.3.- {E | n€ w} dis a back-and-forth without parametens grom

. . n n ‘
{oL; qj)jE'_T to (3', ij jes if E is an equivalence relation in A" U B for
each n, and properties (<) to (iv) of Def. 2.1 hold, dropping the parameter con-

ditions. Such relation is denoted by (?l; qj)jej wA{En, )_{EJ

§ 3 CHARACTERIZATION OF ELEMENTARY EQUIVALENCE.

Let 0f and & be classical structures. {q 1i/€3} and D = {)x. | 7}
are 1nterpretat1ons in ¢L and 55’ respect1ve1y, of the quant'nﬁer' s_ymbcﬂs
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{;1&3}.

) : {e,<)
(%:p)then (s ¢) ~ (D).

@

THEOREM 3.1i.- TI§ (&;

o]

=

PROOF.  Suppose (@:C) (%:D). Forevery § <a and o, c'€A”

T,T'€ 8" define:

B B+1
g~ 0! iff (ct,e;C) = (m,0',C),
Jij g1
! iff (&, D) = (& 7,;D).
i g f+
o~ (7 ~va) itf {@,03€C) = (&7 ;D).

We show that this gives a back-and-forth with parameters (x,<). It is clear that
i

~ is an equivalence relation and properties (£) and {iv) of Def. 2.1 hold. Since

](i,i) and (£i4) are symmetric, it is enough to show (ii). Giveno & A de Ak,ﬁm
et

(D ar(e)<p and (@, o3C) = 6(3)3.
a

By Lemma 1.2, the conjunction A t& may be considered a formula of me{Q_f-)j.EJ.
Since the logic is closed under negations:

1é1f = (dredt @, es0) kA2 (@), )

Now we are ready to check the extension property. Let Qj- be a quantifier
1

symbol of type (nl,..., ”!z) and 5 = max n . Suppase that ‘o ~ 7, with 7 € "

——

. 4L . .
and B <p,<...<B, =B'. Foreach deAt, (ot,0;C) EAZL(A), and so
(o,e:C) E 3 X, A 'ti(x{i)' This last formula has qri= qr (A t&) tn, o

ﬁl
B+u <B+s<p'. Since o ~ 7 them
B'+1 )
(c,0;¢) = (&, 7:D) (2)

. .
andso (&,r3D) B 3 X, Az.{L,). Choose b€ B such that (#,7:C)E
b

Az.(D), and define 4. (@) = Since £+ is a complete set of formulas of
2 * - B+1 (1 N *,3 2 ]

rank <f we have (@, 0,d;C) = (&F,7,§ (i)sD)andsocd~ 7 f(al,

the first condition of the extension property. :

n, :
Now let X’(.’_C_A"', £=1,..., k. Foreach £ Tet T./(x) be the formula §

LV Ax.(X). By (1):
aEX'i @

n. ' -
(x,1% = tieat (@, o 0) & T ().
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similarly, in & :
, B _ . K, . "
[, (x)17 = (X8 | (&,73D) k T, (X)}.

Moreover, the formula Q-il,..., ik (Tl(il),..., Tk(ih)) has qr =8 + 4 <8',
Therefore, by (?) and the definition of quantifier, ([Xl]g saans [xk]'g Y e q;
implies succesively:

Jp

>4+

(@, 05 €) B Qixysenns %yl T, (3

(%, 1, D) F qj.il,..., %, (T (%), T (300

Crgs g g eng . m

REMARK 3.2.- It is clear from thedemomstration of the last theorem that
the functions 51,..., 6?1 in the extension property may be chosen homogeneously,

so they work for all quantifiers of type (nl, rens ”k) . Even more, it is possi-

ble to choose for each p', o, and 7, in advance, a family {4 A g? Inew)
which works for all quantifiers. '

THEOREM 3.3.- I (@;C) (aff)w;n)zhen (oz;c)aE(ﬁG';D).

PROOF. Assume (ol; C) (a‘f)(f&" 3 D}. We prove by induction on the com-
plexity of the formula ¢ (y) ., that if gqr(¢) <B <a, then for all ¢ and = ,
GEIT implies: )

(@: ¢y & ¢lo) iff (%;D) & ¢(r), (1

The result follows from property (£) takiﬁg c=7 =8, .For-atomic formulas, (1)

follows from the isomorphism property (iv). The inductive step for‘l negations and

conjunctions is trivial. Let ¢ = Qa-?cl,..., ?ck (¢1""’ ¢k) be of gr<f and

suppose that (1) holds for Bpseens e Let p = max qr(¢i), 4 = max mn; then
A4

pt+ts&s<f. Define for each £: ‘
-+ n" -+
X;={ac At [ {a, 05 C) F ¢, {d)}
_—
= £ .
V,=1{be B ($,7; D) F o, (B)}.
Since p<p*l<... <p+s<f,then by the extension properties there are func-
n. n. n. n.
tions ﬁi=A"‘->B’L, g/{.-:B"'»A’“ such that
: WP - . - he
oanT g, (d) forall aeA*t. (1)
. P N T A
7bn~og, (B) forall bes™. (m

I I 10 e (X100 g then (167 (X)TF..o0, 047 (6)10) € 2,0 (1ID)




90 XAYIER CAICEDO

r ' p v P
If([Vllf,...,[Vk]f)an then ([g'; (¥)15 . ..o [ ()1 € apr (1Y)

- P - p
CLAIM 1. X, = [X15, V.=V 1z

. P - “
If od' ~od where (0,03 C) k ¢;(a), then (&, r; D)o, {{;(a})
because of {I), the fact that ar (¢;£) < p, and the induction hypothesis. By tran-
., P " i -
sitivity : oa' ~7 6L (2), and $o0 we have again (d,o,C)= ¢o; {a"). This shows
[x; ]ﬁ c X The other direction is trivial, and the case of V. 1is similar.

CLAIM 2. g (X} c ¥, g () S X

This follows from (I}, (II), and the induction hypothesis for ¢, .

P ! P o=
CLATM 3, [4, (X1 =v,, Lg% ()1, =X

The inclusion from left to right follows from Claims 1 and 2. Suppose be VL
. P . P -+ . P - 5
then v b~vo 941-( by vTf.9, (h) and so b ? 64‘_9,{1“})’ But gé(b)e g-’L. (Vi) c X,
X P
and we have b€ [15'&()(4:)1T .

By (IT1), {IV), and Clains 1 and 2, we have that (dl, o5 €} = Oy Kyseees :Zk
(“’1:""4’&{ iff (xl,...,xh)f_aqj. iff (vl,...,vh}enj. iff (&, ;D) E
Qj xls---s xk (@1:---9 ¢h) u

n=

' (@ ,<
COROLLARY 3.4.- (a) (a2;€) ((3’;D) if l@sc) v~ )(%;D).
-] o, <
(b) (s C)= (& ;D) i (@3 C) ~ (&3 D) for all ordinabs o.

COROLLARY 3.5.- Tf the families C, D-and the simibahity types of CLand
& ane finite, then the following conditions ane equivatent:

(2) (o1; €Y= {4&; D) lequivalent for finitary forimulas) |

G2y <

(@) (@ic) ~ ($:D),
(n,<) '
(cid) (@;c)y ~ (F3D) forakl nEw.

PROOF. {if) = (£4d) and (Lid) = (&) are trivialy (£) = (&) follows  from
temma 1.1 and Theorem 3.1. ®

There are more convenient characterizations of oo- elementary equivalency than
Corollary 3.4 (b). :

THEOREM 3.6.- The following ane equivalent:
W) (a;c)y=(%ip).
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(i) (s c) 2 (%3 D) where P s non-wetl ondered.
(£idy (ou; ¢y~ (%3 D) (back-and-forth without parameters).

PROOF, (£} = {<{if). The same as the proof of Theorem 3.1, but simplifying

the definition of back-and-forth to: ¢ ~g¢' iff (g, o; C) = (ct, c'; D), etc.
Instead of £ one defines -t~ ={p ()] (@, 0;C ) E $(a)}. By Lemma 1.2,
A 4‘,&‘ is a saentence of L, (Q )JEJ The rest of the, proof is simpler because
we do not need parameter cond'rt'lons

(£ef)=(iL). Choose any non-well ordered set P and define o !3,1' iff o~ T,
(ed) = (£). Llet py >p, > ... bean infinite descending sequence of P . One

shows, as in the proof of Theorem 3.3, by induction on the compiexity of o (g) ,
that for ail n:

p
oy jmplies: (003 C )k ¢{o) iff (&3 D) e ¢(r)
To use the extension property in the inductive step for Qj- il""’;‘m(q’l""’ )

one chooses pn+é<pn+¢-1< ,<pn, ]

§4 INTERPOLATION AND MONADIC QUANTIFIERS.

A quantifier symbol of type -(”1’“" ”k) is monadie if r, = 1 for all L.
Sintactically, it binds a single variable in each formula: Qxl e Xy (¢l(x1),...,
¢n(xn))" +This includes the cardinal quantifiers ¢ : "there are at least w, e1-‘~

ments", as well as Chang's and Hartig's quantifier, but notthe Magidor - Malitz
quantifiers. Throughout this section LM will denote the logic Looco (2. )j e

where Qj. runs through 211 the possible LindstrBm-Mostowski monadic quant1f1ers

/
LEMMA g, 1 - If a and -3' a;r.f_ stnuctunes of power at most w
°°(.AJ

, Lthen
o= 1

PROOF. tet 2" ={5|8:n > 2}, for SCTA Tet § =S and S =4 =8.
For each n€w and F: 2%+ {x | & cardinal, « < wy } define the quantifier:

0 1
0p(A) = {(Sppn., 8) [ Vo2 | n 5L )= F(a)} Since a monadic structure
L<n

(4, 31, Sn) is completely determined by the above set of cardinals, there cor- ., .
responds to it a unique F such that (T,:..,7,) € Q. (B) i#f (B, Tp,...,7, ) =
(A $1se- Sn) Let 1'% x #(x) mean that the truth set of #(x) has exaclty «
e'lements (rc < wl). Clearly, for structures of power at most Wy, OI.EL (¢ )""
©0 () 1
N - = & '
implies o = o0 3"") G ,andso o = Lep @0 because the Q.'s are

definable from the former quant1f1ers If 40 §s & and ¢ is T ¢ :
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' - FI8) :
Qpxyee %, (0,0xq). 3, (%)) ngn (3 | X ,f'_f<\n ;40 q )
By Therorem 3.6: (0f; Qp {A})F R 2r (B))-F . To conclude the proof, we show

that the given back-and-forth has the extension property with respect to each mo-
nadic quantifier, and apply Theorem 3.3. :

let ¢ ~ 7, B<B', and let - § - A= B be the function given homogeneously
by the extension property for all the QF' s [(see Remark 3.2).

If M= ([X ..,[xh1§) € 0,(A), choose F such thet K€ Qp(A), then ' =

B
1]0. 3.
{4 (Xl)]f, seens [ﬁ’(xk)]f_ ) e 2 (B) by the extension property. Hence, {A,M) =
(B, M') and s0 M' € Q;(B) by definition of Lindstrim-Mostowski quantifier. =

The proof of the following Temma is analogous. Let _LC = me(Qa)&ew,where

Q_ﬂ runs over all the cardinal quantifiers.
LEMMA 4.2.- o =, & imphies oo = & .
ke by .
In Friedman 1873, Friedman gives a sentence ¢ of wa(Qa) (respectively,
wa(Q), where § is Chang's quantifier) containing a relation symbol P, such

that for every oL there is at most an interpretation P for which (&,P) E ¢.
However, K= {a | (cZ, P} F ¢ for some P} is not elementary in L. This is shown

giving a pair of structures L €K, 4 ¢ K which are elementarily equivalent in
LC. It is observed that this is enough to show the failure of Beth's definability

theorem for any logic between Lc'uw(Qa) (respectively wa(Q)) and L. After
Lemma 4.2, we have: ’ :

-

THEOREM 4,3.-  Beth (wa(Qa)’LM) fails for any «>0. Also,
Beth (L (2}, L) falls. ' i

{
For example, Beth's theorem does not hold in Jogic with the Hartig quantifier
since it is between wa(Q) and Lﬂ. The first part of the last theorem is not

true for « =0 because L | is a sublogic of LM extending wa(o_o) and

w
satisfying interpolation; he}me, Beth's theorem. The same is true of A(wa(QO))
(see Barwise 1974). The next theorem fmposes a restriction in such logics. A log-
ic i+ has aelativizaticns if for every monadic predicate V and sentence ¢ of t
there is a sentence o' such that (oL, V=6’ iff GLPV E §. Here, V is
an interpretation of V and @& rT is the restriction of the universe and rela-

tions of ¢¢ to the set V. Almost all interesting Togics have this proper“ty.+ An
exception is logic with Chang's quantifier. The Ldwerhedn number of a Togic L7 is

the smallest cardinal x such that if a sentence of L+ has a model it has oane
of power at most k. It may not exist. 1t satisfies the downward Lbwenheim-Skolem
theorem 1f its Liwenheim number is . ’
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THEOREM 4.4.- let L° be a fogic between L, and Ly having nefativi
zation and satisfying interpolation. T§ 1" has Lowenhedn number K, then fon

any senfence ¢ having {nfinite models Sup{| | S«k|@ E ¢} =k. T§ * does
not have Liwenhedim numbenr such sentence has medels of anbitranily Laige cafadma,t-
2y-

PROOF. Suppose that ther‘e is ¢ with infinite models of size A, ,A <k ,

but not of any size between 2 oand « {included). By definition of LBwenheim
number, there is a sentence ¥ with all its models of power greater than . Let
8 be a sentence whose models are the equivalence reldtions. The classes K1 (re-

spectively KZ) of models of @ having as many equwaience classes as a model of

¢ (respectively, a model of ¢) are PC classes of L defined by the projection
of the sentences:

8 A isa function onto V" A¥xVy {(xEy « §(x) = §()) A o" (resp. v").
Since these sentences do not have common models of power Tess or equal than kx , K1
and K are disjoint PC classes of tt However, they are inseparable in L+.If
{A,E) E K has A has equivalence classes of power A', ard (A', E') € K2 has
Al equwa'lence classes of power &', an easy back-and-forth argument shows that
(A, E) = L (A', E'}, and so (A, E) = (A', E'). From this we conclude that in-
M
terpolatmn fails in tt,om

COROLLARY 4.5.- LlLet L+ be a Logie befween L (Q } and J_M having rela-

Livization and satisfying x_n,tmpo&a,twn, then L AMﬁLM Zhe dowawand Liwenhein-
Skofem theonem.

PROOF. There is a sentence in L (04), and therefore in *, which has'
models of power w but not larger. By Theorem 4.4 it must have Liwenheim number
w, 0 )

§ 5 COFILTER QUANTIFIERS. A SIMPLER BACK-AND-FORTH.

Let € be a quantifier symbol of type (n}), ¢ € '?(An) is-a cofilten Anten-
pretation of 7 if it satisfies Menotonicelty: S€ ¢ and SCS8' dmply S§' € g,
and Distributiviiy: SV 8' € g implies S€q or S' €q. Obviously, g is a

cofilter interpretation iff the "dual" interpretation 7 =18 |A-3¢q}is a fil-
ter over A. In terms of the language, {0Z; ¢) must satisfy the schemata:

Vilp»w) » (0> 0x¢), and QX {4V y)> (X4 V QXY¥). A cofilter quan-
tifier is w-complete if E is an w-complete Fﬂter Equivalently, if '
U{Sn|nEw}€q implies SEQ for some M. ‘

The cardinal quantifiers are cofl'lter, Qa is w—co'mp-Tete if its cofina'lity‘
is greater than «, as is the case of Ql Magidor-Malitz quantifiers are not
cofilter, however the quantifier QO is equivalent to the cofilter quantifier
"B, where Hoxl o %, #{xq y0.0s x,) means "there is an infinite set 1 such
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that for all distinct @pseens & & 1 there is a pefmutation 7 for which
plagyseens ap,} holds".

The back-and-forth characterization of elementary equivalence may be simpli-
fied in the case of logics with cofilter quantifiers:

DEFINITION 5.i.- A admple bac-.fz-and-goluthjmm (s q) to (&, 4) is
defined as in Def. 2.1 (respectively Def. 2.3), except parts (A} and (BY of the
extension property which are changed now to: :

(eét) For all 4 A" there is b€ B" such that:

)

- p
(A+) cga~Th.
(%) [af]g(:‘ g implies [E]fE)L.
(.«;c;é+) The analogue in the other direction.

In the following theorem, the subscript 3(Fin) indicates that there is a sim-
ple back-and-forth from (0L; q) to (& ; n) where the number of equivalence
classes of each Eﬁ is finite. Similarly, S{w) indicates & simple back -and-
forth where each E'; has at most countably many equivalence classes.

THEOREM 5.1.- Let C and D be finite famibies of cofilter quantifier Ln-
tenpredations and assume the number of refations Ain each Atnuetune 44 finite, then:

(@) (m; c)E(F3D) s (a5 C) " (i)
. S(Find
1§ in addition the guantifiens are w-complede:
n (H.,<) ‘
) (@; C)E(F; D) 4f (@sc) ~ (&3p).
_ § {w

(e) 1§ (ot; ¢} % (&, D) with P pon well crdesed, then

${ew) ;

(@; c)E (%, 0).7

PROOF, (a) Since a back-and-forth is a simple back-and-forth, from left to
right follows from Theorem 3.1 and Lemma 1.1, plus the observation that the equiv--

alence classes of Eﬁ result definable by formulas of gqv at most k. For the
other direction one shows that if ¢ and x are cofilter interpretations, then
properties (.L£+ A imply the original extension property. Given o A7 choose
for each @€ A" some §(a) = b such that (A*Y and (B') hold. Assumeasin <i-
Bof bef. 2.1 that X €A% and [X1Fe g Since (X1} =U {(&F|2e X, and
the number of equivalence classes of the relation ~ must be finite, the umion is
of a finite number of classes. By the distributivity of ¢, I @] 5 &q for some
4 X By (B+), [5(&)]5 € x. By monotonicity of &, [5'(x)]’: € n,

(b) and {c} are similar; the converse of (c) fails because the number of de-
finable subsets may be too large. ®
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§6 APPLICATIONS TO L. {0)).

Let 014: be a structure of type Tis then [020,..., ozn 1 s the structure
that has the disjoint union W {A’é | £ < n} as universe and whose relations are the
corresponding copies of the relations of each Ol’i. A relation R between struc-
tures is PC 1ip L+ if there is a sentence in L* such that

R(Ly,..., O1) iff [c‘nl,...,ozn,ﬁ&] E 4.

1

Let £ : 7 =7' be an {nterpretation between similarity types (languages) as
in Barwise 1974. If of 1is a 7'-structure, then ¢I [ % denotes the restric-
tion {projection} of o to a 7-structure, via . In the case of a simple inter-
pretation, we weite o 7.

LEMMA 6.1.- Let € be a finite family of Lindstrbm-Mostomshi quantifiens
such that L . (2, C) has relativizations. Let t, o7, be interpretations

where T s finite. Then the following nefation between structures oL, &, and
P
P is PC .in the given Logic: (06 M3 0,,C) ~ (&Mt 9, C).
1° = S{w) 2t %
PROOF. It is a routine exercise to write down sentences stating that some P
and '{Eﬁ |p€P, n€w?} Forma simple back-and-forth from ¢ P to & Zye

The only second order statement in the original definition, the extension property,
has become first order. Ql and the guantifiers of € are needed to state the ex-

tension property. Ql is also needed to put & countable bound on the number of e-
quivalence classes. The infinite family of relations En(p, XpaeeesXy s 8ps ...,yn)
expressing the Eg 's may be reduced to a single one by a suitable encoding of the

finite sequences, see Caicedo 1978 for details. Relativization is needed to ex-
press the meaning of each quantifier in 0L b :cl and & .tz instead of
[ 0L, &4 s Py .u.]. = i

Let @(u, ¥, P, <) be the sentence given by the lemma where U, V, P, and <de'-
note respectively the unfverse of 4, the universe of % and the ordered set Gf
parameters P.  If we drop the finiténess conditions, & becomes a set of sentences.

In the next lemmz, a class K s PC if there exists a countablfe set of sen-

tences T and an interpretation £ such that K= {or 2 [ ot = T}. t* satisfies
Ls(wl) if every sentence (theory) having a model has one of power at most wy .

LEMMA 6.2.- Let K1 and K, be PC classes of a countubly compact Logic
Il extending L ww{Ql) and having relativizations. 1§ they are fnseparnable by a

sentence of wa(g_l), then there wre Ol € Kl , e Kééuch that (0L Ql) S'\’w

(% Ql) with P non-well oxdered. In case L satisfles Ls(wl) for countable
theonies OL and & may be chosen of powern at mosi @y .

‘ : . +
PROOF. Let £,: 7~ 7, and K, S{a@ rz, [ e T}, with T,cL™. By
countable compactness, we may assume the number of symbols in 7 and T; to be finite
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{see Flum 1975). Suppose K1 and K, are inseparable in wa(Ql) . Since there
are finitely many non equivalent sentences of rank at most n'in this logic, there

. I3 [ .
exist & € Ky, & €K, such that @ Lo (@) &,. Otherwise, we could sep-

n
arate the classes by a sentence of rank n. By Theorem 5.1 (ai ;0Q.) L {4 50
. =1 S( n> =1’

)

In this way, each finite part of the following theory of f.+ has a model:

o, v, 7, QU T, T U (e, g <o lncwl.

Here, T4 {¢u | 6 € T}. By compactness, there is a model 77Z= (&', &P,
of the full set. Making @ =¢d't 1 and & = & ¢ Z,, we-have the result, =

The next theorem is analogous to Lindstrdom's theorem for wa. It is the

best possible result in the sense that it is possible to have proper countably com-
pact extensions of wa(Ql) by non-monadic quantifiers satisfying Ls(ml), for

example logic with the Magidor-Malitz quantifiers Q’{‘.

THEOREM 6.3.- Let L' be a Logic between Leo(@y) and Ly having
nefativizations. 14 LT satisfies compactness and Ls(wl) fon countable theonies,

+ _
then L = wa(Ql}.

PROOF . Suppose ¢ € tt- wa(Ql)’ then the classes K1= Mod (¢,
K2= Mod (1¢) are inseparable in wa(()_l). By Lemma 5.3 and Theorem 3.5, there
exists Ol E¢ ané & E ¢ such that ELo'f” , a contradiction, ™
M

The next theorem shows that interpolation fails strongly in LM‘ It implies
Thecrem 4.3 "For a o= 1, :

;
THEOREM 6.4.- Let ¢ fand ¥ be sentences of L {(Q;) such that ¢ E.
14 they have an interpelant in Ly, they have one in me(Ql)'

PROOF. let T be the cormon language of ¢ and ¥; if they do not have
an interpolant in wa{Ql), then the PC classes K= {oL P | ot E ¢} and

K2= (&t [aﬁ— E ¢} are inseparable. By Lemma 5.3, there are structures Ol F¢
and & £ ¥ such that ¢ T =, & 7. Therefore, ¢ and ¥ do not have in-

terpolants in Ly- ™ H

THEOREM 6.5.- Let T be a countable theony in L . (Qq). I§ T has

a [uncountable) model, Lt has @ (upcouniable] model satisfying at mosi countably
many n-Lypes £n LM, for each n&w. i

PROOF, Take K= X,= Mod(T) in Lemma 5.3. They are obviously insepa-
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P
rable; then we have (0L; Ql) &\' (z%"; Q'l) with P non-well ordered, o and &
Sl

of power at most @ If ¢~d in A", find be 8" such that cf’”b‘; then

a~b~d. Hence, (&, d)}= (&, 5)= {0¢, a'); see Theorem
T L (29) Lo (27)

3.6. By Lemma 4.1, (aZ, ) ELM (01,a'). Therefore, a and a' satisfy the same
type in LM' Since the number of equivalence classes of ~ is countable, the same
is true of the number of types. =

In wa we have that a theory with infinite models has an uncountable model

satisfying at mostcountably many types over each counfable subset. This is not
true here as shown by the counterexample:

Q xP(x)s T Q) xR{x), " <.is a binear onder”,
Yx h’y-(P(x)/\ Py) A xFy -~ Jz(R(z) Ax<zAz<y))
Any model satisfies uncountably many types over the interpretation of R.

The last three theorems hold for any countable compact logic wa(Ql’ c )
having relativizations and satisfying LS{mlj, where C dga finite family of
Linds.-Most. cofilter quantifiers. In Theorems 5.5 and 5.6 one must change LM for
the result obtained by adding to L | (Ql, C ) all monadic quantifiers. However,

we do not know of any concrete examp1e On the other hand, one can show ana'logues
of these theorems for Stationary logic Llaal, see Ca1cedo 1977b. So, any coun-
table theory of L f@a) has a model satisfying at most countably many, types in the
infinitary Togic L(aa) L{ea) is maximal in L(aa)M » with respect to compact-

ness and Ls(wl), and any pair of sentences of L{aa) with an interpolant in
L(aa)M have ore in L{aa).

§7 AN EXTENSION OF wa(go“w) WHERE ELEMENTARY EQUIVALENCE IS
PRESERVED BY PRODUCTS. H

In Badger 1977, L.Badger shows that elementary equivalence of structures is not
preserved by products in the logic wa(q_o'(“’) obtained by addingthe Magidor-
Malitz quantifiers Q_’S under the infinite interpretation to first order logic (cf.

Magidor and Malitz 1977). His preoof is based on the undefinability of well order
in the logic. Actually, his proof gives the stronger result: no extensionof this
logic where well order is undefinable satisfies preservation of elementary equiva-
lence by products. In this section, we define a natural extension of the above
logic where elementary equivalence is preserved by finite products. Badger's coun-
terexample does not work there because well order is definable.

For each n de:F'ine an n-variable quantifier symbol " where R”’xl, ceea Xy

d(x 1700 xn) has the interpretation: “Zhere {4 an infinite Linearly chdered sei

(I, <) without last element such that fon all Xppeews X, A0 T, %y <o < xp

Lnplies ¢(x1,..., X, 3.
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The same quantifier is obtained if one asks the set (1,<}) to be well ordered
or just of type (w,<}. By Ramsey's Theorem this is a cofilter quantifier. Let

wa(R <“") result by adding these quantifiers to first order logic; it extends
logic with Magidor-Malitz quantifiers because:

'S — ph . .
Q-le,...,xnd:(xl,...,xn) R%%ysema Xy 94’("111""”%:1)'

where 7 runs over all permutations. The extension is proper because well order
is definable therae by the sentence szy(y<x), and it is not definable in
L ww(Q_0<m)'by Badger's Theorem 4,10 in Badger 1977. Using our back - and - forth
for cofilter quantifiers we show:

THEOREM 7.1.- L (R<%)-elementany equivalence 44 preserved by finite
products of stmctures. '

PROOF. let o and & (respectively &' and %) be L (R

mentary equivalent. Since every sentence has finitely many relation and quantifier
symbols, there is no loss of generality in assuming that the similarity type fIs

finite and restricting our considerations to C = {Rl,..., R™}. By Theorem 5.1:
{3
(61; €) ~ (& ;C), and the same is true for OL' and &'. Let

S${Fin) b :
B,é = {w, <, {EL nl n, k€ w}), i=1,2, be the corresponding back-and-forths.

For each pair of sequences % = (xl,..., x,)> .&'m{x'l,...,x’n) define X +%'=
((xlx'l),..., (xnx'n)). Define Eﬁ in (AxAN)® U (Bx8' )" by:

- + h -+
Y and x'Ez,ng'.

.
[

4 xem g+ g ifF XE

We claim that the system Bt = (0,<, {Eﬁ |k, n€w}) is a simple back-and-
forth from oL x o' to & x x’,' , with finitely many equivafence classes for
each Eﬁ. ’

The fact that Eﬁ is an equivalence relation, and praperties (i) and {{v} of

Definition 2.1 follow easily because they are expressed by universal Horn sen-
tences, that are preserved by cartesian products, and we defined the new relations
as.the "product relations” are ordinarily defined in the cartesian product. €% has

finitley many equivalence classes because for any %+y the equivalence class of
this sequence with respect to £/ has the form:
(Gei1f e @+ dr |derxl® and @ erzn®y.
Therefore, if E;"’ " has M classes and E'lzz " has N classes, E& has MN
classes. It remains o show the extension proper’ty (u*-w;*) for each R™. Let
o=+ e {AxA)Y " and 7 =4+ E{"G (Bx8')" be such that U&'a‘r , and sup-
pose that k + & < [k'. By definition: ‘ '
k' . k!
X~y and X'~ . 1)
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let 4+ a' € (Ax_A')’L. By the extension property in B, and B,, there exist
b = (bl"“’bn) and 67 =(p!,..., b Y& 8™ such that:

. R e RO
xa ~ gb and x'a' ~ y'b’ (2)
121% e 2% (&) implies 161 R e RY(B)
) s !zx P g n (3)
[@'1% &R (A") implies [ by € RT(8")
s, R 4 s
From {2}: {o, a+ a'Ye= (r ,b+b").
It remains to show that (4} below implies {5):
s= (a+dfert@xa) (4)
16+ 51k er™ (Bxa) (5)

Assuming (4), we get a linear order {I, <) of type (w,<) with I € AxA', such
that for all (ulwl) <. < (u}L wn) in 1,

(i: U’l""’"‘ ) ~ (3‘4 a)
G, ) @, &)

If J and J' arve the proaechons of T in A and A' respectwe]y,one of them,
say J, must be infinite. Choose a function g : J - J' such that u.,ia u)yerT for
all w€ J, and define a linear order in J by: uy < uz‘lff (ul,g(ul) <(I'.L ,g(u

It must have type (w;<). MHoreover w <. <uy, in kJ implies f{u ,g(u ))
<. <(u&,g(u )) in 1, and so (ul,. sl )E [a];. Hence, [a] € R’L(A)

and 16 ]~ e 2% (B) by (3). Let {L, <) of type {w,<) with LC3B be such that

u.1< <u in L dmplies (ul, v un)e[glfﬂ Now we consider two cases
/

with respect to I, . ‘

i

CASE 1. J' is finite.
Then there is w€ J' such that {ueJ| (u,w) € T} is infinite and there exist

(ujw) < .:o < (u,w) in 1. Hence, ({uyw)... (u,@)) €S and so (X7, 0, .., w)

ko« .

~ (x!, a'l,..., a’)L) ’% {y', b’l,..., b:,t). By the isomarphism property of back-and-
forth, this fmplies b= ... = b' = b'. Define the infinite set I'.= Lx{b'} €
Bx B', and order it by: (ulb')< (uzb') i oug < u,. Then

{ulb')< el < (ukﬁa') implies (“1“""&)6[5]5’ and s0

k

: ((‘f’lb')"' (unb'))E[E;H;']T This shows (5).

CASE 2. Both 1, J' are infinite.
Then we also have [5']5, e R™(B'), by (3). Llet (L', <€) be & linear order
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of type (w,<) for which ui <.,..< u'n implies (ui,...,u'}t)e [B']%. Let §: [~1L!
be a one to one order preserving function and define 1t = {(u, §(u)) [ue L} with
the order (ul, 5(u1}) < (uz, 6(u2)) i oug <u, Iff 5(u1) < 5(u.2). If

(aps §a))) < oov < uy, §(u, ) then (agse.., )€ (D12 -
(§lag)s.-os $lu,))e [5']';3,, which proves (lugs §lug))seonlu, flu,))E [h+67]
and shows (5} again. With this we finish the proof that

and
B

T

@xasc) ~ (Ex%5c)
S(Fin)

Now apply Theorem 5.1. ®

REFERENCES.

L. Badger

1977  An Ehnenfeucht game for the multivariate quantifien of Maliiz and some ap -
plications, Pac. J. of Math. vol. 72, pp. 293 - 304.

J. Barwise

1974 Axfoms fon Absinact Modef Theory, Ann. of Math. Logic vol. 7, pp. 221 - 285,

J. Barwise, M. Kaufmann, and M. Makkai
1977 Stationary Logic; University of Wisconsin, preprint.

X. Caicedo i

1977a On extensions of wa(Ql) , preprint.

1977 b A back-and-forth characterization of elementary equivalence in
Stationary Logic, preprint.

i

1978 Maximality and integpolation in abstract logics, Fh.D. disserta-
tion, University of Maryland.

A. Ehrenfeucht

1961  An application of games to the completeness problem fox fonmalized theonies,
Fund. Math. vol. 49, pp. 129 - 141,

J. Flum

1975 First caden Logic and ifs extensions, Logic Conference Kiel, lLlect.
Notes in Math. vol. 499, pp. 248 - 310.

R. Fraissé .

1955  Sur quelques classifications des relat{ons, basfes sun des isomorphismes
nestreints, Alger-Mathématiques, vol. 2, pp. 16 - 60, 273 - 295, :

H. Friedman

1973 - Beth's theonem Ln cardinality Logic, israel J. of Math., vol. 14, pp. 205-
213.,




BACK-AND-FORTH SYSTEMS 101

§: 1> g, Keisler

with 1969 Logfc with the quaniiflienr "there oxists uncountably wany', Ann. of Math.
Logic, vol. 1, pp. 1 - 94,

dc. arp _
1965 Finite quantifier equivalence, The Theory of Models, Addison, Henkin
; and Tarski (eds.), North-Holland Pub. Co. Amsterdam, pp. 407 - 412,

| M. Kaufmann

1978 Some results in Stationary Logic, Ph. D. dissertation, University of
Wisconsin.

1976  Ehnenfeucht games foi generalized quantifiens, Set Theory and Hierarchy
Theory, Lect. Notes in Math. vol. 537, pp. 145 - 152.

1966 Fiuwt oader predicate Logde with generalized quantifiers, Theoria, vol. 32,
pp. 186 - 195,

1068 On extensions of Efementany Logde, Theoria, vel. 35, pp. 1 - 11,

M. Magidor and 4. Malitz _
1 1977  Compact extensions of L(Q), Pant 1, Ann. of Math. Logic, vol. 12, pp. 217 -
261.

i !
J.A. Makowski
nce if19772 Some Modef Theeay §or monotone quantifiers, Arch. Math, Logik, vol. 18,pp.
1 115 - 134.
/
;serta 31977b Elementary eguivalence and definability in Stationary Logic ,
‘ II Mathematisches Institut der Freien Universitdt, Berlin, preprint.

11978 Quantifying over countable sets: Positive vs. Stationary Logic.
II Mathematisches Institut der Frejen Universitdt, Berlin, preprint.

dJ.A. Makowski, S. Shelah and J. Stavi

Lect [J1976 A- fogies and genenalized quantifier, Ann, of Math. Logic, vol.10, pp. 155 -
' 192,

A. Mostowski

On a generalization of quantifiers, Fund. Math., vol. 44, pp. 12 - 36,

Completenass theorems fon Topologieal wmodefs, Ann. of Math. Logic, vol. 11,




102 © ' XAVIER CAICEDO

p pp. 173 - 193.

O s. Vinner
% 1972 A genenalization of Ehrenfeucht’s game and some applications, Israel J. of
! Math. vol., 12, pp. 279 - 298.

- Departamento de Matemdatica

Universidad de Los Andes
Apartado Aéreo 4976
Bogotd D.E.

Colombia

e,




