Examen de Área 2017-2

- 1. (a) Muestre que si $X_n \to a$ en distribución, con $a \in \mathbb{R}$, entonces $X_n \to a$ en probabilidad.
 - (b) Muestre que si $Y_n \to Y$ en distribución y $X_n \to a$ en probabilidad entonces $Y_n + X_n \to Y + a$ en distribución.
 - (c) Muestre un ejemplo tal que $X_n \to X$ y $Y_n \to Y$ en distribución, pero $X_n + Y_n \not\to X + Y$.
- 2. Sean $X = (X_i)_{i \in \mathbb{N}}$ una familia i.i.d. variables aleatorias con $\mathbb{E}(|X_1|) < \infty$ y τ una variable aleatoria con valores en \mathbb{N} con $\mathbb{E}(\tau) < \infty$ e independiente de la familia X.
 - (a) Mostrar que

$$\mathbb{E}[\sum_{i=1}^{\tau} X_i] = \mathbb{E}[X_1]\mathbb{E}[\tau].$$

(b) Si adicionalmente τ y los X_i disponen de segundos momentos, entonces

$$\mathbb{V}(\sum_{i=1}^{\tau} X_i) = \mathbb{V}(\tau)(\mathbb{E}(X_1))^2 + \mathbb{E}(N)\mathbb{V}(X_1).$$

Indicación: Usar la formula para una variable aleatoria Y con segundos momentos y evento A.

$$\mathbb{V}(Y \mid A) := \mathbb{E}(Y^2 | A) - \mathbb{E}(Y | A)^2.$$

- 3. Sea X_1, \ldots, X_n una muestra aleatoria de X con distribución $N(\theta, \sigma^2)$, con $\sigma^2 > 0$ conocido.
 - (a) Encuentre el estimador de máxima verosimilitud para θ , $\hat{\theta}$.
 - (b) Defina $\Lambda = \frac{L(\theta; \mathbf{X})}{L(\hat{\theta}; \mathbf{X})}$, con L la función de verosimilitud. Muestre que $-2 \ln \Lambda$ se distribuye $\chi^2(1)$
 - (c) Encuentre un intervalo de confianza al $(1-\alpha)100\%$ para θ usando el estadístico anterior.
- 4. Sea $(\theta_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias i.i.d. con distribución uniforme sobre [0,1]. Para N entero positivo fijo, sea $X=(X_n)_{n\in\mathbb{N}}$ dado de manera siguiente: $X_0=1$

$$X_{n+1} = (X_n - 1)\mathbf{1}_{[0, \frac{X_n}{N}]}(\theta_{n+1}) + (X_n + 1)\mathbf{1}_{(\frac{X_n}{N}, 1]}(\theta_{n+1})$$

- (a) Mostrar que el proceso X define una cadena de Markov y calcule su matriz transición P.
- (b) Mostrar que X satisface la propiedad $\mu(i)P(i,j) = \mu(j)P(j,i)$ donde μ es la distribución Binomial(N,1/2).
- (c) Inferir que μ es la distribución límite.
- (d) Mostrar que el tiempo promedio de volver al estado N/2 (para N par) crece asintóticamente como $\sqrt{\frac{\pi N}{2}}$.
- (e) Comparar esta asintótica con el tiempo promedio de volver al estado 0.
- 5. Sea $X \in \mathcal{L}^2(\mathcal{F})$ y \mathcal{G} sub- σ -álgebra de \mathcal{F}
 - (a) Si la varianza condicional se define como $\mathbb{V}(X|\mathcal{G}):=\mathbb{E}[X^2|\mathcal{G}]-\mathbb{E}[X|\mathcal{G}]^2$, muestre que

$$\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|\mathcal{G})] + \mathbb{V}(\mathbb{E}[X|\mathcal{G}])$$

y concluya que $\mathbb{V}(X) \geq \mathbb{V}(\mathbb{E}[X|\mathcal{G}])$.

(b) Muestre que $\mathbb{E}[X|\mathcal{G}]$ es el único óptimo (c.s.) del problema

$$\min_{Y \in \mathcal{L}^2(\mathcal{G})} \mathbb{E}[(X - Y)^2].$$