Examen de Área de Probabilidad y Estadística. 2015-I

Instrucciones:

- Escoja y responda cinco (5) de las seis (6) preguntas siguientes, incluyendo suficientes cálculos y explicaciones sobre su procedimiento.
- Tiempo del examen: Tres (3) horas.
- En la última página encontrará un formulario con las funciones de probabilidad (o densidad de probabilidad, en el caso continuo) la media y varianza de las principales distribuciones.
- 1. Sean X_n , $n \ge 1$, y X variables aleatorias definidas en un mismo espacio de probabilidad. Decimos que X_n converge a X en media cuadrática y escribimos $X_n \stackrel{\text{(mc)}}{\to} X$, cuando $\mathbb{E}(X_n - X)^2 \to 0$ cuando $n \to \infty$. Pruebe lo siguiente:
 - (i) $X_n \stackrel{\text{(mc)}}{\to} X \Longrightarrow X_n \stackrel{\text{(p)}}{\to} X$, es decir, convergencia en media cuadrática implica convergencia en probabilidad.
 - (ii) De un ejemplo que muestre que el recíproco no es cierto.
 - (iii) Muestre que si existe M > 0 tal que $|X_n| \le M, |X| \le M$, entonces $X_n \stackrel{\text{(p)}}{\to} X \Longrightarrow X_n \stackrel{\text{(mc)}}{\to} X$.
- 2. Sea $(X_i)_{i\in\mathbb{N}}$ una sucesión de variables aleatorias sobre el mísmo espacio de probabilidad con

$$\mathbb{P}(X_n = n) = \frac{1}{n^3}, \quad \mathbb{P}(X_n = 0) = 1 - \frac{1}{n^3}.$$

- (i) Muestre que $X_n \to 0$ en probabilidad.
- (ii) Determine en qué espacios $L^p(\mathbb{P})$, $p \geq 1$, se cumple $X_n \to 0$.
- (iii) Muestre que $X_n \to 0$, casi seguramente.
- 3. Demuestre que si X es una variable aleatoria con valores en $[0, \infty)$, con distribución \mathbb{P}_X absolutamente contínua respecto a la medida de Lebesgue, y con una densidad estrictamente positiva en $[0, \infty)$ que satisface: para cualesquiera t, s > 0

$$0 < \mathbf{P}(X > t + s | X > t) = \mathbf{P}(X > s) < 1$$

existe un $\lambda > 0$ tal que $X \sim \exp(\lambda)$.

Nota: Definiendo $\phi(t) = \mathbb{P}(X > t)$, Usted puede usar la relación del enunciado para probar

$$\phi(t+s) = \phi(t)\phi(s).$$

y luego encontrar ϕ a partir de esta última identidad.

- 4. Sea B un movimiento Browniano con valores en \mathbb{R} . Muestre lo siguiente:
 - (i) El proceso $(Y_t)_{t\geq 0}$ definido como $Y_t:=B_t^2-\mathbb{E}(B_t^2)$ es una martingala con respecto a la filtración natural de B.
 - (ii) Sea $\lambda \in \mathbb{R}$. Entonces el proceso $(Z_t)_{t\geq 0}$, definido como $Z_t := \frac{e^{\lambda B_t}}{\mathbb{E}(e^{\lambda B_t})}$ es una martingala con respecto a la filtración natural de B.
- 5. Considere el modelo de regresión lineal múltiple, escrito matricialmente como

$$\mathbf{Y} = \mathbb{X}\beta + \epsilon$$

donde **Y** es el vector respuesta $n \times 1$, \mathbb{X} es la matriz de diseño, $n \times k$, β es el vector de parámetros, $k \times 1$ y ϵ es el vector de errores con distribución N $(\mathbf{0}, \sigma^2 I_n)$, siendo I_n la matriz identidad $n \times n$.

Sea $\hat{\beta}$ el estimador de mínimos cuadrados de β . Pruebe que si las columnas de \mathbb{X} son ortogonales, entonces las coordenadas de $\hat{\beta}$ son independientes. Nota: Puede probar que las coordenadas de $\hat{\beta}$ son no correlacionadas e invocar una propiedad de la Normal multivariada.

- 6. Sea X con distribución $f(x; \theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{en otra parte.} \end{cases}$
 - (a) Encuentre la información de Fisher $I(\theta)$.
 - (b) Si $X_1, X_2, ..., X_n$ es una muestra aleatoria de esta distribución, muestre que el estimador de máxima verosimilitud de θ , es

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i}.$$

(c) Cuál es la distribución asintótica de $\sqrt{n} \left(\hat{\theta} - \theta \right)$? Basado en esto, muestre que un intervalo aproximado de $1 - \alpha$ de confianza para θ es $\hat{\theta} \pm z_{\alpha/2} \frac{\hat{\theta}}{\sqrt{n}}$.

Principales Distribuciones

Distribución	$p(x) \circ f(x)$	Rango(X)	$\mathrm{E}(X)$	Var(X)
Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$\{0,1,2,\ldots,n\}$	np	np(1-p)
Geo(p)	$(1-p)^{x-1}p$	$\{0,1,2,\dots\}$	1/p	$(1-p)/p^2$
BinNeg(k, p)	$\binom{x-1}{k-1}p^k(1-p)^{x-k}$	$\{k, k+1, \dots\}$	k/p	$k(1-p)/p^2$
$Poisson(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\{0,1,2,\dots\}$	λ	λ
$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$x \in \mathbb{R}$	μ	σ^2
$\mathrm{Unif}(a,b)$	$\frac{\frac{1}{b-a}}{\lambda e^{-\lambda x}}$	a < x < b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\exp(\lambda)$	7.0	x > 0	$1/\lambda$	$1/\lambda^2$
$Gamma(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	x > 0	$\alpha\beta$	$lphaeta^2$
$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$x \in [0,1]$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$