Examen de Área de Probabilidad y Estadística noviembre - 2012

Instrucciones:

- Escoja y responda cinco(5) de las seis(6) preguntas siguientes, incluyendo suficientes cálculos y explicaciones sobre su procedimiento.
- Tiempo del examen: Tres (3)horas.
- En las última página encontrará un formulario con la media y varianza de las principales distribuciones.
- 1. Sea f una función continua y acotada. Hallar

$$\lim_{n\to\infty}\int_0^\infty\cdots\int_0^\infty f\left(\frac{x_1+\cdots+x_n}{n}\right)e^{-(x_1+\cdots+x_n)}dx_1\ldots dx_n.$$

Ayuda: Vea la integral como una esperanza y acótela, usando convergencia en probabilidad.

2. Sea (X,Y) un vector aleatorio bidimensional con función de distribución acumulativa conjunta F(x,y) y sean $F_1(x)$, $F_2(y)$, las funciones de distribución acumulativas de X e Y, respectivamente. Se dice que el par (X,Y) presenta dependencia de cuadrante positivo cuando

$$F(x,y) \ge F_1(x)F_2(y), \quad \forall x, y.$$

La función conjunta de supervivencia, S(x,y) se define como $S(x,y) = \Pr(X > x, Y > y)$ mientras que $S_1(x) = \Pr(X > x)$ y $S_2(y) = \Pr(Y > y)$ son las funciones de supervivencia de X e Y, respectivamente.

Pruebe que el par (X, Y) tiene dependencia de cuadrante positivo, si y solo si

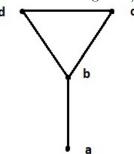
$$S(x,y) \ge S_1(x)S_2(y), \quad \forall x, y.$$

3. Para el par de variables X e Y, con medias μ_1 , μ_2 y varianzas σ_1^2 y σ_2^2 , respectivamente, recordemos que la covarianza y correlación entre X y Y, están dadas, respectivamente, por

$$\operatorname{Cov}(X,Y) = \mathbb{E}((X - \mu_1)(Y - \mu_2))$$
 $y \qquad \rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_1 \sigma_2}$

- (a) Para $t \in \mathbb{R}$, calcule Var(X + tY).
- (b) ¿Para cual valor de t es mínima la varianza de la parte (a)?
- (c) Pruebe que $\rho \in [-1, 1]$.
- (d) Si $\rho = 1$, deduzca que existe un valor de t en \mathbb{R} , tal que la varianza de la parte (a) es cero y existe una recta L tal que $\Pr((X,Y) \in L) = 1$.
- 4. Una partícula realiza un paseo al azar en el grafo de la figura de la manera siguiente: Cuando la partícula se encuentra en un vértice, elige uno de los vecinos de este, al azar

(con probabilidades iguales), se mueve a ese vecino y el proceso se repite.



(a) Escriba la matriz de transición correspondiente a este paseo al azar.

(b) Encuentre el número esperado de pasos (tiempo de llegada) para que el paseo llegue al vértice d cuando arranca desde a. (Ayuda: Encuentre todos los tiempos de llegada a d arrancando desde a, b y c)

Sean X_1, X_2, \ldots variables i.i.d. con función generadora de momentos $\varphi(\theta) = \mathbb{E}(\exp(\theta X_1))$, que existe en un entorno del 0. Pruebe que, para cada θ en dicho entorno, la sucesión

$$Z_n = \frac{\exp(\theta \, S_n)}{\varphi^n(\theta)}$$

es una martingala, siendo $S_n = X_1 + \cdots + X_n$.

5. Sea X una variable con distribución Gamma $(4,\beta)$. Recordemos que la densidad Gamma viene dada por

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)} \text{ para } x > 0.$$
 (1)

(a) Hallar el EMV para β (cuando se sabe que $\alpha = 4$).

(b) Hallar la información de Fisher para una observación y la correspondiente cota de Cramér Rao para una muestra de tamaño n.

(c) ¿El EMV alcanza la cota Cramér-Rao para una muestra de tamaño n?

6. Sea $X_n \sim \text{Poisson}(n)$.

(a) Pruebe que X_n , debidamente estandarizada, converge en distribución a una Normal(0,1).

(b) Pruebe que

$$e^{-n}\left(1+n+\frac{n^2}{2!}+\frac{n^3}{3!}+\cdots+\frac{n^n}{n!}\right)\to \frac{1}{2}$$

cuando $n \to \infty$.

Principales Distribuciones

Distribución	$p(x) \circ f(x)$	Rango(X)	$\mathrm{E}(X)$	Var(X)
Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$\{0,1,2,\ldots,n\}$	np	np(1-p)
Geo(p)	$(1-p)^{x-1}p$	$\{0,1,2,\dots\}$	1/p	$(1-p)/p^2$
BinNeg(k, p)	$\binom{x-1}{k-1}p^k(1-p)^{x-k}$	$\{k,k+1,\dots\}$	k/p	$k(1-p)/p^2$
$Poisson(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\{0,1,2,\dots\}$	λ	λ
$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$x \in \mathbb{R}$	μ	σ^2
$\mathrm{Unif}(a,b)$	$\frac{1}{b-a}$	a < x < b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\exp(\lambda)$	$\lambda e^{-\lambda x}$	x > 0	$1/\lambda$	$1/\lambda^2$
Gamma (α, β)	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	x > 0	$\alpha\beta$	$\alpha \beta^2$