Examen de Área de Probabilidad y Estadística- 2008

Instrucciones:

- Escoge cuatro (4) de seis(6) preguntas en parte I de Probabilidad
- Escoge una pregunta en parte II de Estadística.
- Tiempo: Tres (3)horas

PARTE I - PROBABILIDAD

- 1. a) Sean $\Omega = \{1, 2, 3\}$, $\Im_1 = \{\emptyset, \Omega, \{1\}, \{2, 3\}\}$ y $\{\emptyset, \Omega, \{1, 2\}, \{3\}\}$. Demuestra qué \Im_1 y \Im_2 son σ -algebras, pero $\Im_1 \cup \Im_2$ no es σ -algebra.
 - b) Sea $\Omega = \{1, 2, 3, 4\}$. Halle cuatro(4) σ -algebras differentes $\{\Im_n\}$ para n = 1, 2, 3, 4 tal que $\Im_1 \subset \Im_2 \subset \Im_3 \subset \Im_4$.
- 2. a) Sea X una variable aleatoria con distribución exponencial de parámetro λ . Hallar una función de densidad de la variable aleatoria

$$Y := \ln X$$
.

- b) Un jugador extrae simultánea y aleatoriamente dos bolas de una urna que contiene 8 bolas blancas, 5 bolas negras y 3 bolas azules. Suponga que el jugador gana 5000 pesos por cada bola negra seleccionada y pierde 3000 pesos por cada bola blanca seleccionada. Sea X la variable aleatoria que denota la fortuna del jugador. Hallar la función de densidad de la variable aleatoria X.
- 3. a) Sean $X, X_n, n = 1, 2, ...$ variables aleatorias reales definidas sobre un espacio de probabilidad (Ω, \Im, P) , demuestre que

$$X_n \stackrel{P}{\to} X$$
 implica que $X_n \stackrel{d}{\to} X$ cuando $n \to \infty$.

b) Sea $X_1, X_2, ... X_n$ variables aleatorias independientes de $\mathbf{U}(0,1)$. Demuestre que:

$$\frac{X_1+X_2+\ldots+X_n}{X_1^2+X_2^2+\ldots+X_n^2} \xrightarrow{p} \frac{3}{2} \text{cuando} n \to \infty.$$

- 4. a) Supongamos $\{N_n, n \geq 0\}$ una sucesión de variable aleatoria normal. Demostrar que $N_n \xrightarrow{d} N_0$ si sólo si $E(N_n) \to E(N_0)$ and $Var(N_n) \to Var(N_0)$.
 - b) Verificar (a) para las variables aleatorias exponenciales.
- 5. Sean $X_1, X_2, \dots > 0$ variables aleatorias i.i.d. con $m = \mathbb{E}log(X_i)$ y $\sigma^2 = var(log(X_i)) < \infty$. Si

$$P_n = e^{-m\sqrt{n}} \prod_{i=1}^n X_i^{1/\sqrt{n}}.$$

Demostrar que la ley de P_n converge débilmente a la ley de e^Z , donde $Z \sim N(m, \sigma^2)$.

- 6. Clasifique los estados de las cadenas de Markov con matrices de transción P y espacios de stados dados por;
 - a) $S = \{1, 2, 3\}$ para $p \in [0, 1/2]$

$$P = \begin{pmatrix} 1 - 2p & 2p & 0\\ p & 1 - 2p & p\\ 0 & 2p & 1 - 2p \end{pmatrix}$$

b) $S = \{1, 2, 3, 4\}$ para $p \in [0, 1]$

$$P = \begin{pmatrix} 0 & p & 0 & 1-p \\ 1-p & 0 & p & 0 \\ 0 & 1-p & 0 & p \\ p & 0 & 1-p & 0 \end{pmatrix}$$

En cada caso calcule P^n , la matriz de transición en n pasos y el tiempo medio de recurrencia de cada estado.

[Sugerencia: Diagonalize la matriz P.]

PARTE II - ESTADÍSTICA

- 1. Suponga que $X_1, X_2, ... X_n$ son variables aleatorias Normales $N(\mu \sigma^2)$, independientes y que $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$ el estimador para la media poblacional. Muestre que :
 - a) El estimador es insesgado
 - b) El estimador es suficiente
 - c) El estimador es eficiente
 - d) La distribución de $\hat{\mu}$ es asimptóticamente Normal.
- 2. En una regresión bivariada $Y = \alpha + \beta X + u$, se cuenta con la siguiente información:

	X_i	Y_i	$a = (X_i - \overline{X})$	$b = (Y_i - \overline{Y})$	a*b	a^2	b^2	$Y_i(estimado)$	$e_i(residuos)$	e_i^2
	21	4	7.5	1	7.5	56.25	1			
	15	3	1.5	0	0	2.25	0			
	15	3.5	1.5	0.5	0.75	2.25	0.25			
	9	2	-4.5	-1	4.5	20.25	1			
	12	3	-1.5	0	0	2.25	0			
	18	3.5	4.5	0.5	2.25	20.25	0.25			
	6	2.5	-7.5	-0.5	3.75	56.25	0.25			
	12	2.5	-1.5	-0.5	0.75	2.25	0.25			
Suma	108	24			19.5	162	3			

- a) Utilice ésta para calcular los estimadores de α y β
- b) Calcule el \mathbb{R}^2 de la regresión
- c) Calcule la varianza de la estimación.