EXAMEN DE ÁREA - LÓGICA MAYO DE 2023

- 1. Sean $A, B \subseteq \mathbb{N}$ recursivamente enumerables. Pruebe que existen $A_0 \subseteq A$ y $B_0 \subseteq B$ recursivamente enumerables tales que $A_0 \cap B_0 = \emptyset$ y $A_0 \cup B_0 = A \cup B$.
- 2. Demuestre que existe un campo ordenado no arquimediano (en donde hay elementos mayores que cualquier suma finita de la unidad multiplicativa).
- 3. Sea \mathcal{U} un ultrafiltro no principal sobre \mathbb{N} . Demuestre que las siguientes afirmaciones son equivalentes:
 - (a) Para cualquier conjunto enumerable $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{U}$ existe $A \in \mathcal{U}$ tal que $A \setminus A_n$ es finito para todo $n \in \mathcal{N}$.
 - (b) Para cualquier función $f: \mathbb{N} \to \mathbb{N}$ existe $A \in \mathcal{U}$ tal que $f \upharpoonright A$ es constante o finito-a-uno.
- 4. Decimos que $A\subseteq\mathbb{R}$ es un conjunto con distancias únicas (CDU) si para cualesquiera $a,b,c,d\in A$ se tiene que

$$a - b = c - d \neq 0 \implies a = c \land b = d.$$

Demuestre que existe un CDU no enumerable.

5. Sea

$$\mathcal{M} := \left\{ \left(\mathbb{Z}/2\mathbb{Z} \right)^{\omega}, \oplus \right\},\,$$

donde \oplus es la suma por componentes del producto cartesiano.

- Demuestre que la teoría de grupos abelianos infinitos en donde todo elemento diferente de la identidad tiene orden 2 es categórica en todo cardinal infinito.
- Demuestre que en $\mathcal{L} := \{\oplus\}$ la teoría $Th(\mathcal{M})$ elimina cuantificadores.
- 6. Demuestre el Teorema de Ryll-Nardzewski: Una teoría enumerable completa T con modelos infinitos es \aleph_0 categórica sí y sólo sí todo tipo de T es aislado.