Examen de área Lógica 2021-II

- 1. Sea $f: \mathbb{N} \to \mathbb{N}$ una función recursiva tal que el conjunto $\{n \in \mathbb{N} : f(n) \leq n!\}$ es finito. Demuestre que el conjunto $A = \{f(n) : n \in \mathbb{N}\} \subseteq \mathbb{N}$ es recursivo.
- 2. Sea T una teoría consistente de primer orden tal que para cualquier sentencia φ en el lenguaje de T se tiene que si $T \cup \{\varphi\}$ es consistente entonces $T \cup \{\varphi\}$ no es completa. Muestre que existen al menos 2^{\aleph_0} modelos no elementalmente equivalentes de T.
- 3. Demuestre que en el modelo $(\mathbb{R}, +, \cdot, 0, 1)$ la multiplicación no es definible en el lenguaje $\mathcal{L} := \{+, 0, 1\}$.
- 4. Demuestre que para cualquier función $f: \mathbb{R} \to \mathbb{R}$ existen funciones inyectivas $g, h: \mathbb{R} \to \mathbb{R}$ tales que f = g + h.
- 5. Sea $\langle S_{\alpha} : \alpha \in \omega_1 \rangle$ una sucesión de subconjuntos estacionarios de ω_1 y suponga que $S_{\alpha} \cap S_{\beta}$ es no estacionario si $\alpha \neq \beta$. Pruebe que existe un cerrado no acotado $C \subseteq \omega_1$ tal que $S_{\alpha} \cap S_{\beta} \cap C$ es enumerable para cualesquiera $\alpha \neq \beta$.
- 6. Sea T una teoría completa en un lenguaje enumerable \mathcal{L} sin modelos atómicos. Sea $\mathfrak{A} \models T$ un modelo enumerable. Demuestre que existe $\mathfrak{B} \models T$ enumerable tal que \mathfrak{A} no se sumerge elementalmente en \mathfrak{B} ni \mathfrak{B} se sumerge elementalmente en \mathfrak{A} .