Examen de Conocimientos en el área de Análisis 201820

3.T 1		
Nombre:		
Tioninio.		

Problema 1. Sea f una función continua definida en el intervalo $[a, +\infty)$ y supongamos que el límite $\lim_{x\to\infty} f(x)$ existe y es finito, entonces f es uniformemente continua en el intervalo $[a, +\infty)$.

Problema 2. a) Sea f una función holomorfa del disco unitario $D=\{z:|z|<1\}$ en sí mismo tal que f(0)=0. Pruebe que $|f(z)|\leq |z|$ para todo $z\in D$. (Ayuda: considere la función f(z)/z)

- b) Para cuales f (definidas como en a)) existe un punto $c \neq 0$ en D tal que |f(c)| = |c|?
- c) Sea h una función holomorfa del disco unitario D en sí mismo pero distinta a la identidad en D. Pruebe que h tiene a los sumo un punto fijo.

Problema 3.

Sea (X, \mathcal{M}, μ) un espacio medible donde μ es una medida positiva y sea $f: X \to \mathbb{C}$ una función medible.

- a) Pruebe que si $f \in \mathcal{L}^1(\mu)$, entonces $\lim_{n\to\infty} n\mu\{|f| \ge n\} = 0$.
- b) Considere la función $f(x)=\frac{1}{x\ln(x^{-1})}$ definida en le intervalo $[0,e^{-1}]$ para probar que el recíproco es falso.

Problema 4. Sea L^p el espacio $L^p(\mu)$ donde μ es la medida de Lebesgue en $(0, +\infty)$ y $||u||_p$ es la norma L^p de la función u.

Sea p>1 y sea $f:(0,+\infty)\to\mathbb{R}$ una function nonegativa en L^p con soporte compacto [a,b] contenido en $(0,+\infty)$. Defina

$$(Hf)(x) = \frac{1}{x} \int_0^x f(t)dt.$$

- (a) Pruebe que Hf pertenece a L^p .
- (b) Aplique integral por partes a la integral

$$\int_0^{+\infty} F(x)^p \frac{d}{dx}(x) dx$$

justificando cada paso para concluir la validez de la siguiente igualdad

$$p \int_{a}^{b} F(x)^{p-1} f(x) dx = (p-1) \int_{a}^{+\infty} F(x)^{p} dx$$

donde escribimos F(x) = (Hf)(x)

(c) Pruebe que $||Hf||_p \leq \frac{p}{p-1}||f||_p$.

Problem 5. Sea $H = L^2([0,2])$ y sea $T : L^2([0,2]) \to L^2([0,2])$ dada por $T(f) = x^2 f$.

- (a) Pruebe que T es un operador autoadjunto.
- (b) Pruebe que ||T|| = 4.
- (c) Pruebe que $\sigma_p(T) = \emptyset$.
- (d) Pruebe que $\sigma_c(T) = [0, 4]$.

Problema 6. a) Para $f \in C_{\mathbb{R}}([0,1])$, pruebe que $f \geq 0$ si y solo si $\|\lambda - f\|_u \leq \lambda$ para todo $\lambda \geq \|f\|_u$, donde escribimos $\|\cdot\|_u$ para la norma del supremo.

(b) Suponga que $E \subseteq C_{\mathbb{R}}([0,1])$ es un subespacio cerrado que contiene la función constante 1. Para $\phi \in E^*$, se escribe $\phi \ge 0$ si $\phi(f) \ge 0$ para todo $f \in E$ con $f \ge 0$. Pruebe que $\phi \ge 0$ si y solo si $\|\phi\| = \phi(1)$.

Problema 7. Considere el espacio de Hilbert $l_2(\mathbb{N})$ y sea $e_n \in l_2(\mathbb{N})$ definida por $e_n(i) = \delta_{in}$.

- (a) Pruebe que si una sucesión $\{a_n\}_n$ converge en la topología de la norma también converge en la topología débil.
 - (b) Pruebe que en la topología de la norma, $\{e_n\}_n$ no tiene subsucesiones convergentes.
 - (c) Pruebe que en la topología débil, $\{e_n\}_n$ converge y halle el vector su límite $a = w \lim_{n \to \infty} e_n$.
- (d) Encuentre una sucesión de combinaciones convexas de $\{e_n\}_n$ que converge a a en la topología de la norma.