EXAMEN DE CONOCIMIENTO DE ANÁLISIS., NOVIEMBRE 2015.

1. a. Sea $f_n: X \longrightarrow \mathbf{C}$ una sucesión de funciones. Asuma que existen M_n , $n=1,2,3,\ldots$ tales que $|f_n(x)| \leq M_n$ para todo $x \in X$, y

$$\sum_{n} M_n < \infty.$$

Demuestre que $\sum_{n} f_{n}(x)$ converge uniformemente.

b. Considere la función para $s \in \mathbb{C}$ definida por

$$\zeta\left(s\right) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Muestre que ζ es continua para Re(s) > 1.

2. Sea (X,μ) un espacio de medida σ -finito y $f_n:X\to\mathbb{R}$ una sucesión de funciones medibles y suponga que $f_n\to 0$ en $L^1(X,\mu)$. Demuestre que $f_n\to 0$ en casi todo punto.

3. Sea $u:\Omega\longrightarrow \mathbf{R},\,\Omega\subset\mathbb{R}^2$ abierto, una función armónica (esto es una función suave) tal que

$$\Delta u = 0$$
 en Ω .

a. Suponga que $0 \in \Omega$ y $\rho > 0$ tal que la bola de radio ρ centrada en $0, B_{\rho} \subset \Omega$. Sea $\frac{\partial}{\partial r}$ el vector unitario radial. Demuestre que para todo r > 0 tal que $r \leq \rho$

$$\frac{\partial}{\partial r} \int_{S_{-}} u(x,y) \ ds = 0,$$

donde S_r es el círculo de radio r > 0 centrado en el origen

b. Use el punto anterior (aunque no lo haya resuelto) para demostrar que

$$u\left(0\right) = \frac{1}{2\pi r} \int_{S_{r}} u\left(x, y\right) dx dy.$$

c. Use el punto anterior (aunque no lo haya resuelto) para demostrar que

$$u\left(0\right) = \frac{1}{\pi r^{2}} \int_{B_{-}} u\left(x, y\right) \, dx dy.$$

4. Demuestre que la función $f(x) = \cos x$ es real analítica, esto es muestre directamente que su serie de Taylor centrada en un punto a converge a la función.

5. Sea

$$c_0 = \{(x_n)_{n=1,2,3,\dots} : x_n \in \mathbf{R} \ \text{y} \ x_n \to 0\}.$$

Muestre que c_0 es denso en l^p , para $1 \le p < \infty$. Es c_0 denso en l^{∞} ?

6. Calcule la serie de Fourier de la función periodica $f(\theta) = \theta^2$ y utilize la serie para calcular la suma de las series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ y $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$. Importante: f está definida en $-\pi \le \theta \le \pi$ y es extendida a todo $\mathbb R$ por periodicidad.