Exámen de área. Álgebra (2012-2)

Instrucciones: Resuelva los siguientes problemas. Tiempo: 3 horas.

- 1. [8pts.] Sea G un grupo finito y suponga que G actua en el conjunto X. Es decir que hay un homomorfismo de grupos $\phi: G \to \operatorname{Sim}(X)$.
 - (a) Demuestre que $G_x := \{g \in G : \phi(g) \cdot x = x\}$ es un subgrupo de G.
 - (b) Demuestre que $Ker(\phi) = \bigcap_{x \in X} G_x$.
 - (c) Demuestre que si $H \subseteq G$ es un subgrupo de índice n entonces existe un subgrupo normal de G con índice $\leq n!$ (Sugerencia: Construya un conjunto X con una acción de G y use los ejercicios anteriores).
- 2. [8pts.] Sea R un anillo conmutativo con unidad y sean M,N y P módulos sobre R.
 - (a) Demuestre que si $f: M \to N$ es un homomorfismo de R-módulos entonces la función $g_f: M \otimes P \to N \otimes P$ dada por $g_f(m \otimes p) = f(m) \otimes p$ está bien definida y es un homomorfismo de R-módulos
 - (b) Si $f:M\to N$ es un homomorfismo sobreyectivo verifique que el homomorfismo $g_f:M\otimes P\to N\otimes P$ es sobreyectivo
 - (c) Sea $R = \mathbb{Z}$. Dé un ejemplo de módulos M, N, P y un homomorfismo inyectivo $f: M \to N$ para el cual el homomorfismo $g_f: M \otimes P \to N \otimes P$ no sea inyectivo.
- 3. [8pts.] Sea G un grupo con 35 elementos.
 - (a) Demuestre que G tiene subgrupos normales H y N de tamaño 5 y 7 respectivamente.
 - (b) Demostrar que G es isomorfo a $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.
- 4. [12pts.] Sea $L: V \to V$ un operator lineal sobre un espacio vectorial de dimensión finita cuyos autovalores son todos iguales a 1 y que permuta un conjunto S de vectores que genera a V. Demostrar que $L = id_V$. (Sugerencia: Note que L determina un elemento de Sim(S), utilice ésto para entender el polinomio minimal de L)
- 5. [12pts.] Sea A un anillo noetheriano. Entonces A es un dominio de factorización única si y solo si cada elemento irreducible es primo.
- 6. [12 pts.] Sea p un primo y sea G un grupo de tamaño p^2 .
 - (a) Demostrar que G es abeliano.

- (b) Cuál es el máximo número de subgrupos que puede tener G?
- 7. [12 pts.] Sea $V=\mathbb{C}^d$ y $\langle x,y\rangle:V\times V\to\mathbb{C}$ una funcion que satisface las siguientes propiedades para todos $x,y,z\in V$ y $\alpha\in\mathbb{C}$
 - (a) $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle$
 - (b) $\langle z, \alpha x + y \rangle = \overline{\alpha} \langle z, x \rangle + \langle z, y \rangle$
 - (c) $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
 - (d) $\langle x, x \rangle \geq 0$ (note que $\langle x, x \rangle$ es siempre un número real por (3))

Sea $T: V \to V$ una transformación lineal tal que $\langle Tx, y \rangle = \langle x, Ty \rangle$ para todos $x, y \in V$.

- (a) Demuestre que los valores propios de T son números reales y que vectores propios de valores propios distintos son \langle,\rangle ortogonales.
- (b) Demuestre que T es diagonalizable y que puede escogerse una base de vectores propios que sea \langle,\rangle ortonormal. (Sugerencia: Si v es un vector propio de T demuestre que $v^{\perp}:=\{y\in V: \langle y,v\rangle=0\}$ es dejado invariante por T)
- (c) T es semidefinida positiva ssi $\langle Tx, x \rangle \geq 0$ para toda $x \in V$. Demuestre que T es semidefinida positiva ssi todos sus valores propios son no negativos.
- 8. [12 pts.] Sea p un primo y sea $\mu \in \mathbb{C}$ una p-ésima raíz primitiva de la unidad.
 - (a) Demuestre que el grupo de Galois $\operatorname{Gal}(\mathbb{Q}(\mu)/\mathbb{Q})$ es cíclico de tamaño p-1.
 - (b) Ahora suponga que n es tal que $p \equiv 1 \pmod{n}$. Demuestre que hay un campo L con $\mathbb{Q} \subseteq L \subseteq \mathbb{Q}(\mu)$ con $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/n\mathbb{Z}$. (Lo anterior, junto con el teorema de Dirichlet de primos en progresiones aritméticas demuestra que todo grupo cíclico es el grupo de Galois de alguna extensión finita de \mathbb{Q}).