Examen de area en Algebra, Noviembre 2011

November 29, 2011

1. Sea s_n el número de sucesiones $(\epsilon_1, \ldots, \epsilon_n)$ de longitud n con $\epsilon_i \in \{0, 1\}$ y

$$\epsilon_1 \le \epsilon_2 \ge \epsilon_3 \le \epsilon_4 \ge \dots \epsilon_n$$
.

Encuentre una fórmula recursiva para s_n .

- 2. Determine los siguentes grupos abelianos:
 - (a) Hom $(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$
 - (b) $\mathbb{Z}/n\mathbb{Z} \otimes \mathbb{Z}/m\mathbb{Z}$
- 3. Sea A un grupo abeliano finito y V un \mathbb{C} -espacio vectorial. Sea $\phi:A\to GL(V)$ un homomorfismo de grupos. Demuestre:
 - (a) Para todo $a \in A$ existe una base de V con respecto a la cual $\phi(a)$ es diagonal.
 - (b) Existe una base de V con respecto a la cual $\phi(A)$ consiste exclusivamente de matrices diagonales.
- 4. Sea $f(x) \in \mathbb{Q}[x]$ un polinomio de grado n y sea $R = \mathbb{Q}[X_1, \dots, X_n, W]$ un anillo de polinomios en n+1-variables sobre \mathbb{Q}
 - (a) Sea J el ideal $(f(X_1), \ldots, f(X_n), (W \prod_{i < j} (X_i X_j)) 1)$ de R. Demuestre que existe un ideal M maximal propio de R con $M \supseteq J$.
 - (b) Demuestre que $R/M \supseteq \mathbb{Q}$ es una extensión de ruptura para f(x).
- 5. (a) Suponga que $K \supseteq k$ es una extensión de Galois y sea $G = \operatorname{Gal}(K/k)$. Para $\alpha \in K$ demuestre que el polinomio

$$f(x) = \prod_{g \in G} (x - g(\alpha))$$

tiene coeficientes en k y es divisible por el polinomio minimal de α sobre k.

(b) Sea $L=\mathbb{C}(t)$ y sea $\phi:\mathbb{C}(t)\to\mathbb{C}(t)$ el automorfismo de campos determinado por $\phi(t)=\frac{3t-2}{4t-3}$. Determine el subcampo

$$L^H := \{l \in L \text{ tales que } g(l) = l \text{ para todo } g \in H\}$$

(Sugerencia: Use la parte (a) para determinar el polinomio minimal de t sobre L^H).

- 6. Sea K un campo y \overline{K} su clausura algebraica. Sea $P \in K[x]$ un polinomio mónico. Demuestre que P no tiene raíces múltiples en \overline{K} ssi gcd(P; P') = 1, dónde P' es la derivada del polinomio P. Demuestre que si P es irreducible ésto es equivalente a que P' = 0.
- 7. Sea k un campo algebraicamente cerrado no contable.
 - (a) Si t es trascendente sobre k demuestre que k(t) es de dimensión infinita no contable sobre k (Sugerencia: Verifique que los elementos $(t-\lambda)^{-1}$, $\lambda \in k$ son linealmente independientes sobre k).
 - (b) Sea $V \neq \{0\}$ un espacio vectorial de dimensión contable sobre k. Si $T: V \to V$ es un operador lineal, demuestre que el espectro de T es no vacío, es decir, que existe algun $\lambda \in k$ tal que el operador $T \lambda I$ no es invertible. (Sugerencia: Muestre que de lo contrario, el espacio V es un espacio vectorial sobre el campo k(t)).
- 8. Sea $R = \mathbb{Z}[\sqrt{5}]$. Demuestre las siguientes afirmaciones:
 - (a) R no es un dominio de factorización única.
 - (b) R no es integralmente cerrado en su campo de fraciones. (Sugerencia: Considere $(1 + \sqrt{5})/2$).