EXAMEN DE ÁREA EN ÁLGEBRA, Diciembre 2010

- 1. Sea **k** un campo y $\mathbf{k}(x)$ el campo de funciones racionales sobre **k**. Muestre que $\mathbf{k}(x) \otimes_{\mathbf{k}} \mathbf{k}(x)$ no es un campo. Sugerencia: muestre que que el producto en $\mathbf{k}(x)$ induce un homomorfismo de $\mathbf{k}(x) \otimes_{\mathbf{k}} \mathbf{k}(x)$ en $\mathbf{k}(x)$ que no es inyectivo.
- 2. Sean $m, n \in \mathbb{N}^+$, (m, n) = 1 y suponga G es un grupo abeliano tal que existe una sucesión exacta

$$0 \to \mathbb{Z}_m \xrightarrow{f} G \xrightarrow{g} \mathbb{Z}_n \to 0.$$

Muestre que $G \cong \mathbb{Z}_{mn}$ sin usar el teorema de estructura para grupos abelianos finitamente generados. Sugerencia: encuentre una preimagen a en G de un generador de \mathbb{Z}_n tal que na = 0.

3. Sean **k** un campo, V un espacio vectorial sobre **k**, y $\sigma: V \to V$ una transformación lineal. Para cada $\lambda \in \mathbf{k}$ considere el "espacio propio"

$$V^{\lambda} = \{ v \in V : \sigma(v) = \lambda v \}.$$

Muestre que si $\lambda_1, \ldots, \lambda_l$ son diferente y $v_i \in V^{\lambda_i} \setminus \{0\}, i = 1, \ldots, l$, entonces v_1, \ldots, v_l son linealmente independientes.

- 4. Sea K un campo de ruptura del polinomio $x^3 2$ sobre \mathbb{Q} . Calcule el grupo de Galois $Gal(K, \mathbb{Q})$.
- 5. Sea G un grupo y $H \leq G$ un subgrupo de índice $n < \infty$. Muestre que G tiene un subgrupo normal $N \leq H$ tal que $[G:N] \leq n!$. Sugerencia: Construya una accíon de G en un conjunto X de cardinalidad n.
- 6. Recordamos que un campo \mathbf{k} se llama *perfecto* si cada extensión finita de \mathbf{k} es separable. Suponga que char $\mathbf{k} = p > 0$. Muestre que \mathbf{k} es perfecto si y solo si la aplicación de Frobenius $Fr : \mathbf{k} \to \mathbf{k}, \ a \mapsto a^p$, es biyectiva. Concluya que todos los campos finitos son perfectos.
- 7. Sean \mathbf{k} un campo algebraicamente cerrado $\mathbf{y} \phi : \mathbf{k}[x,y]/(x^2-y^3) \to \mathbf{k}[t]$ el homomorphismo de anillos definido por $\phi(x) = t^3, \phi(y) = t^2$ $\mathbf{y} \phi(\lambda) = \lambda$, para $\lambda \in \mathbf{k}$. Muestre que la aplicación inducida $\phi^* : \max \mathbf{k}[t] \to \max \mathbf{k}[x,y]/(x^2-y^3)$ es biyectiva pero que ϕ no es un isomorphismo de anillos. (Aquí $\max R$ denota el conjunto de ideals maximales en un anillo R.)
- 8. a) Muestre que un ideal principal de $\mathbb{Z}[x]$ no puede ser maximal.
 - b) Sea $\mathfrak{m} \subset \mathbb{Z}[x]$ un ideal maximal. Muestre que $\mathfrak{m} \cap \mathbb{Z} \neq (0)$. Sugerencia: Use que $\mathbb{Q}[x]$ es un DIP.