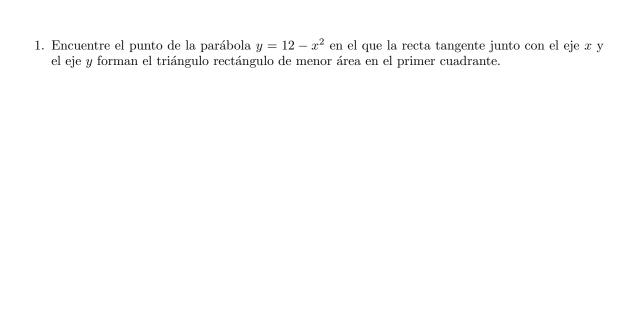
Departamento de Matemáticas- Universidad de los Andes

Examen de Admisión al Posgrado — Parte 1 Junio 13 de 2023

Este es un examen **individual**, no se permite el uso de libros, apuntes, calculadora, o cualquier otro medio electrónico. Marque todas las hojas con su nombre completo.

Toda respuesta debe estar **justificada** matemáticamente.

Tiempo máximo:180 minutos



2. Estudiar la convergencia de las siguiente serie

$$\sum_{n\geq 2} \frac{1}{\ln n^{\ln n}}.$$

- 3. Sea f(x,y) una función diferenciable en \mathbb{R}^2 y sea $h(r,\theta)$ su representación en cordenadas polares.
 - a) Encuentre fórmulas que expresan las derivadas parciales $\frac{\partial h}{\partial r}(r,\theta) \frac{\partial h}{\partial \theta}(r,\theta)$ en términos de $\frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)$ y $\frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta)$.
 - b) Encuentre una fórmula para el laplaciano f(x,y) de en términos de las derivadas parciales de h.

4. Use series de potencias para resolver el problema de valor inicial

$$y'' + xy' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$

- 5. Sean A,B,C y D conjuntos. Determine si las siguientes afirmaciones son verdaderas o falsas. En cada caso justifique su respuesta.
 - a) Si $A \subseteq B$ y $C \subseteq D$, entonces $A \setminus D \subseteq B \setminus C$.
 - b) $A \times (B \setminus C) = (A \times B) \times (A \setminus C)$.
 - c) $\mathcal{P}(A \triangle B) = \mathcal{P}(A) \triangle \mathcal{P}(B)$ (recuerde que $A \triangle B := (A \cup B) \setminus (A \cap B)$).

d)

$$B \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B \setminus A_i).$$

- 6. Sea V un espacio vectorial y $T:V\to V$ una transformación lineal tal que para toda base β de V, la matriz que representa T con respecto a β es diagonal.
 - a) Demuestre que T tiene un único autovalor.
 - b) Demuestre que T es un múltiplo de la identidad.

7. Muestre que si Z_1 y Z_2 son variables aleatorias independientes con densidades f_{Z_1} y f_{Z_2} entonces $\mathbb{P}[Z_1=Z_2]=0.$

