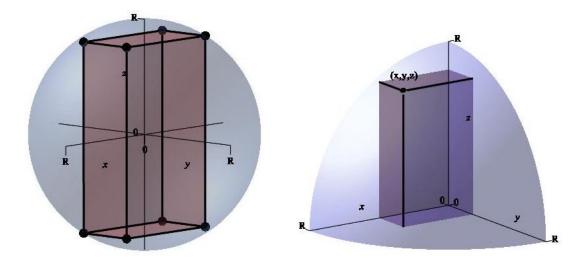
MATE 1207 - Examen Final - 7 de diciembre de 2019 Tema 1

Nombre:				Cód	Código:			
P1:	P2:	P3:	P4:	P5:	P6:	NOTA:		

No está permitido el uso de ningún tipo de apuntes, libros o calculadoras. Cualquier dispositivo electrónico (incluido su celular) debe permanecer apagado durante el examen.

Importante: Para obtener el máximo (o algún) puntaje en cada problema, además de la respuesta correcta, se debe presentar de forma clara y ordenanda el procedimiento completo que permite llegar a ésta (a menos que se diga explícitamente lo contrario).


Duración: 120 minutos

1. [/**5pts**] Para cada uno de los siguientes límites determine si existe y en caso afirmativo calcúlelo. Justifique su respuesta.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\cos(x^2+y^2)-1}{x^2+y^2}$$

2. [/5pts] Sea E un paralelepípedo rectangular inscrito en la superficie esférica de radio $R=5 \mathrm{cm}$ centrada en el origen. Encuentre el volumen máximo que puede tener E (ver gráficas).

- 3. [/5pts] Sea R la región plana acotada por la parábola $y=1-x^2$ y la recta y=0. Suponga que D es una lámina que ocupa la región plana R con densidad $\rho(x,y)=y$.
 - (a) Haga una gráfica de la región plana R y calcule la masa de D.
 - (b) Calcule el centro de masa de D.

4. [/5pts] Sea E el sólido limitado por el cilindro $x^2 + y^2 = 1$ y los planos z = 0 y z = 2 y S es la frontera de E orientada con la normal exterior. Sea $\vec{F}(x,y,z) = (x,y,z^2)$. Haga una gráfica de E y calcule

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

- 5. [/5pts] Sea $\vec{F}(x,y)=(y,x+y^2)$ y σ la trayectoria que recorre el semicírculo $x^2+y^2=36,$ $x\geq 0,$ en sentido antihorario.
 - (a) Determine si \vec{F} es un campo conservativo y en caso afirmativo encuentre un potencial de \vec{F} . Justifique su respuesta.
 - (b) Haga una gráfica de σ y calcule

$$\int_{\sigma} \vec{F} \cdot d\vec{s}.$$

6. [/5pts] Sea σ la trayectoria cerrada formada por el triángulo con vertices (0,0,1), (0,1,0) y (1,0,0) recorridos en ese orden. Haga una gráfica de σ y calcule

$$\int_{\sigma} xydx + yzdy + zxdz.$$