One way to get some understanding on the relations between equations and their solutions over complex numbers is to compute the monodromy of the covering

(an equation, its solutions) \mapsto (an equation)

over the relevant space of equations. One very general context in which we can wonder about monodromy groups is for square systems of polynomial equations

$$f_1(x_1,\cdots,x_n)=\cdots=f_n(x_1,\cdots,x_n)=0$$

where we decide in advance not only the degree of each f_j but its support, that is which monomials show up in f_j . There are some general statements in this context, but already for n = 2, the monodromy groups of some systems $f_1 = f_2 = 0$ are not known. In this talk, I would like to report on recent progress on the computation of these groups. In certain classes of examples, I would like to describe the monodromy groups, explain why they are not full symmetric groups in general and, eventually, explain how we can compute them using considerations from toric/tropical geometry.