One way to get some understanding on the relations between equations and their solutions over complex numbers is to compute the monodromy of the covering

$$
\text { (an equation, its solutions) } \mapsto(\text { an equation })
$$

over the relevant space of equations. One very general context in which we can wonder about monodromy groups is for square systems of polynomial equations

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

where we decide in advance not only the degree of each f_{j} but its support, that is which monomials show up in f_{j}. There are some general statements in this context, but already for $n=2$, the monodromy groups of some systems $f_{1}=f_{2}=0$ are not known. In this talk, I would like to report on recent progress on the computation of these groups. In certain classes of examples, I would like to describe the monodromy groups, explain why they are not full symmetric groups in general and, eventually, explain how we can compute them using considerations from toric/tropical geometry.

