Departamento de Matemáticas Universidad de los Andes MATE 2510- PROBABILIDAD (HONORES)

Profesores: V. Arunachalam (aviswana@uniandes.edu.co)

Temas:

- Conceptos básicos de probabilidad: Introducción. σ-álgebra. Borel σálgebra. Espacio de probabilidad. Axiomas y teoremas elementales de probabilidad. Espacios de probabilidad laplacianos. Probabilidad condicional. Teorema de Bayes. Independencia de eventos. Probabilidad Geométrica.
- Variables aleatorias y sus distribuciones: Definición y ejemplos de una variable aleatoria discreta. Variables aleatorias continuas. Función de distribución. Valor esperado y varianza de una variable aleatoria. Función generadora de momentos. Función característica. Función generadora de probabilidad.
- 3. Distribuciones: Discretas; Discreta uniforme, Bernoulli, binomial, hipergeométrica, Poisson, geométrica y binomial negativa. Continuas; uniforme, normal, exponencial, gamma, beta, Weibull y otras distribuciones.
- 4. Vectores Aleatorios: Distribución conjunta de variables aleatorias. Variables aleatorias independientes. Covarianza y coeficiente de correlación. Distribución de una función de un vector aleatorio. Valor esperado y varianza de un vector aleatorio. Funciones generadores de momentos y característica conjuntas. Distribución normal multivariada.
- 5. Esperanza condicional: Función de densidad condicional. Valor esperado condicional. Esperanza condicional. Dada una σ-álgebra. Propiedades. Ejemplo; Martingalas.
- 6. Modos de convergencia: Convergencia casi siempre, en r-media, en probabilidad y en distribución; definición, ejemplos y propiedades. Desigualdades de uso frecuente; Markov, Chebyscheff. Relación entre los diferentes tipos de convergencia.
- 7. Leyes de los grandes números y teorema del límite central: Ley débil de los grandes números. Ley fuerte de los grandes números. Teorema del límite central.

Texto: Basic Probability Theory - Nota de clase disponible en SICUA

BIBLIOGRAFÍA

Ash, R. Basic Probability Theory. John Wiley and sons, 1970.
Blanco, L. Probabilidad. Unibiblos. Universidad Nacional de Colombia.
Brémaud, P. An introduction to Probabilistic Modeling, Springer 1980.
Grimmett, G. y Stirzaker, D. Probability and Random Processes, Oxford, 2001.
Feller, W. An introduction to probability theory and its application, Wiley, 1965.
Ross, S.A first course in Probability, Prentice Hall.2002.
Stirzaker, D., Elementary Probability. Cambridge, 2003.

UNIVERSIDAD DE LOS ANDES PROGRAMA CURSO MATE 2510- I SEMESTRE DE 2009 TODAS LAS CLASES DEBEN INICIAR LABORES A LA HORA EN PUNTO Y TERMINAR 10' ANTES DE LA HORA

Semana	Tópicos	Fecha de Tareas y Parciales
1	Espacios de probabilidad	
2	Probabilidad condicional e independencia de eventos	Tarea 1
3	Probabilidad Geométrica y Ejercicios	Tarea 2
4	Variables aleatorias Variables aleatorias discretas	Parcial 1 : 10 de febrero
5	Variables aleatorias continuas Distribución de una función de una variable aleatoria	
6	Valor esperado y varianza de una variable aleatoria. Función generadora de momentos y de probabilidad. Función característica.	Tarea 3
7	Distribuciones discretas	Tarea 4
8	Distribuciones continuas	Parcial 2 : 10 de marzo
9	Distribución conjunta de variables aleatorias. Variables aleatorias independientes	Tarea 5 20 de marzo: Entrega de 30%
10	Variables aleatorias independientes Covarianza y coeficiente de correlación Distribución de una función de un vector aleatorio	Vi 27 de marzo: Última día retiros
11	Valor esperado y varianza de un vector aleatorio Funciones generadoras de momentos y característica conjuntas Distribución Normal Multivariada	Tarea 6
12	Función densidad condicional Esperanza condicional dada una σ-álgebra	Parcial 3: 16 de abril
13	Desigualidades; Markov, Chebyscheff, Jensen, Cauchy-Schwartz, Convergencia de sucesiones de variables aleatorias. Ley débil de los grandes números	Tarea 7
14	Convergencia de sucesiones de variables aleatorias. Ley fuerte de los grandes números.	Tarea 8
15	Teorema central del límite.	

La nota final está basada en las notas de tres (3) exámenes parciales, ocho(8) tareas, y la nota del examen final. La nota final se calcula de la siguiente manera: Examen Parcial - 60%, Tarea -20%, Examen Final - 20%.

HORA DE ATENCION: Martes y Jueves: 10:00 - 11:20 am

LUGAR: H414