Métodos de punto interior para optimizacién convexa

Desde su introduccién por Karmarkar en los 80s, los métodos de punto interior han sido el
principal campo de investigacidn en optimizacién en las iltimas dos décadas, esto ha dado como
resultado una teoria madura y elegante. Al mismo tiempo han habido avances importantes desde el
punto de vista computacional, hasta el punto que hoy en dia la mayoria de los paquetes comerciales
de optimizacidn incorporan métodos de punto interior como parte fundamental de sus rutinas.

En este curso cubriremos la teoria basica de métodos de punto interior. También estudiaremos
aspectos numéricos y e implementacién. Haremos especial énfasis en programacion lineal y progra-
macién semidefinida. Finalmente discutiremos algunas aplicaciones de programacién semidefinida
en combinatoria v en probabilidad.

Prerrequisitos

Algebra lineal ¥ cilculo vectorial.
Familiaridad con programacion lineal, optimizacién, y/o anilisis numérico es deseable.

Instructores

Dos instructores estardn a cargo del curso: Juan Carlos Vera y Javier Pefia (visitantes de Carnegie
Mellon University).

Horario

Lunes y miércoles 2-3:30.

Formato

Tareas (60%) v pruvecto/presentacidn final (40%). No habrd exdmenes.
Tres créditos. Asistentes serios son bienvenidos.

Programa
Con certeza cubriremos las primeras cinco partes. Esperamos cubrir un buen subconjunto de las
liltimas cineo partes. Esto lo definird el interés de los participantes.

1. Introduccion.
2. Preliminares

(a) Algebra lineal
(b) Célculo
(¢) Condiciones de optimalidad para programacidn convexa

(d) Método de Newton

3. Puntos interiores en programacion lineal



10.

I

Elementos de programacidn semidefinida y programacidn cdnica
Puntos interiores en programacion semidefinida

Programacion sobre conos simétricos

. Cédigo de dominio piblico: Lipsol, SeDuMi, SDPT3, SBundle
. Métodos para problemas de gran escala

. Aplicaciones

(a) Relajacidn de Goemans-Williamson para corte maximo
(b} Funcidn © de Lovész

(¢} Problema de momentos

{d}) Optimizacidn de polinomios

(e) Optimizaciin robusta

(f) Aplicaciones de programacidn conica en fisica
Temas avanzados

(a) Optimizacion de valores propios

(b) Algebras de Jordan

{¢) Clasificacién de funciones de barrera
(d) Funciones espectrales

{e) Programacidn semiestable

(f} Polinomios hiperbdlicos
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